Transplantation of Developing Hippocampal Neurons to Ischemic and Excitotoxic Lesions of the Adult Rat Hippocampus

  • Niels Tønder
  • Torben Sørensen
  • Flemming Fryd Johansen
  • Jens Zimmer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)


Intracerebral transplantation of immature brain tissue is now a wellestablished technique for the study of the development and regenerative capacity of neurons and nerve connections in the central nervous system. With this purpose we have previously grafted hippocampal and fascia dentate tissue to newborn and adult rats (Sunde and Zimmer, 1983; Sunde et al., 1984; Zimmer and Sunde, 1984; Zimmer et al., 1985, 1986, 1987, 1988a,b,c; Tønder et al., 1986, 1988; Sørensen and Zimmer, 1988a,b). One set of studies included grafting to rats with induced maldevelopment of the hippocampal neuronal circuitry and demonstrated that dentate granule cells damaged by neonatal X-irradiation can be partly replaced by homotypic transplants of immature fascia dentata (Sunde et al., 1984, 1985). Another observation was that the exchange of hippocampal graft-host nerve connections clearly depended on the age of the recipient animal. The exchange of nerve connections was much more extensive in animals X-irradiated at birth and grafted immediately thereafter than in other irradiated rats where the grafting was delayed into early adulthood (Sunde et al., 1985). In accordance with this, the number of graft neurons with commissural projections is much higher after grafting to normal newborn rats (Tønder et al., 1988) than after grafting to normal adult rats (unpublished results). In this chapter we shall, however, review some of our recent data, demonstrating that extensive reciprocal innervation of the graft and the host brain can take place also in the adult brain, provided that the grafting is performed into so-called “axon-sparing” lesions. In these types of lesions the neurons in the lesion area degenerate while the extrinsic afferent nerve fibers are spared and remain in the area for several months (Coyle and Schwarcz, 1983).


Mossy Fiber Ibotenic Acid Dentate Granule Cell Commissural Fiber Host Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N.H., 1984, Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis, J. Neurochem, 43: 1369.PubMedCrossRefGoogle Scholar
  2. Björklund, A., and Stenevi, U., 1984, Intracerebral neural implants: Neuronal replacement and reconstruction of damaged circuitries, Ann. Rev. Neurosci, 7: 279.PubMedCrossRefGoogle Scholar
  3. Caroni, P., Savio, T., and Schwab, M.E., 1988, Central nervous system regeneration: oligodendrocytes and myelin as non-permissive substrates for neurite growth., Prog. Brain Res, 78: 363.PubMedCrossRefGoogle Scholar
  4. Cotman, C.W., and Nieto-Sampedro, M., 1985, Progress in facilitating the recovery of function after central nervous system trauma, Ann. NY Acad. Sci, 457: 83.PubMedCrossRefGoogle Scholar
  5. Coyle, J.T., and Schwarcz, R., 1983, The use of excitatory amino acids as selective neurotoxins, in: “Handbook of Chemical Neuroanatomy. Vol. 1: Methods in Chemical Neuroanatomy”, A. Björklund and T. Hökfelt, eds., Elsevier Science Publishers B. V.Google Scholar
  6. Heacock, A.M., Schonfeld, A.R., and Katzman, R., 1986, Hippocampal neurotrophic factor: characterization and response to denervation, Brain Res, 363: 299.PubMedCrossRefGoogle Scholar
  7. Johansen, F.F., Jorgensen, M.B., Ekström von Lubitz, D.K.J., and Diemer, N.H., 1984, Selective dendrite damage in hippocampal CA1 stratum radiatum with unchanged axon ultrastructure and glutamate uptake after transient cerebral ischaemia in the rat, Brain REs, 291: 373.PubMedCrossRefGoogle Scholar
  8. Johansen, F.F., Zimmer, J., and Diemer, N.H., 1987, Early loss of somatostatin neurons in dentate hilus after cerebral ischemia in the rat precedes CA-1 pyramidal cell loss, Acta Neuropathol. (Berl.), 73: 110.CrossRefGoogle Scholar
  9. Jorgensen, M.B., and Diemer, N.H., 1982, Selective neuron loss after cerebral ischemia in the rat: Possible role of transmitter glutamate, Acta Neurol. Scand, 66: 536.PubMedCrossRefGoogle Scholar
  10. Kesslak, J.P., Nieto-Sampgdro, M., Globus, J., and Cotman, C.W., 1986, Transplants of purified astrocytes promote behavioral recovery after frontal cortex ablation, Exp. Neurol, 92: 377.PubMedCrossRefGoogle Scholar
  11. Köhler, C., 1983, Neuronal degeneration after intracerebral injections of excitotoxins. A histological analysis of kainic acid, ibotenic acid and quinolinic acid lesions in the rat brain, in: “Wenner-Gren International Symposium Series. Vol. 39: Excitotoxins”, K. Fuxe, P. Roberts and R. Schwarcz, eds., Macmillan Press, London.Google Scholar
  12. Köhler, C., Schwarcz, R., and Fuxe, K., 1979, Hippocampal lesions indicate differences between the excitotoxic properties of acidic amino acids, Brain Res, 175. 366.PubMedCrossRefGoogle Scholar
  13. Lindsay, R.M., Barber, P.C., Sherwood, M.R.C., Zimmer, J., and Raisman, G., 1982, Astrocyte cultures from adult rat brain. Derivation, characterization and neurotrophic properties of pure astroglial cells from corpus callosum, Brain REs, 243: 329.PubMedCrossRefGoogle Scholar
  14. Mudrick, L.A., Baimbridge, K.G., and Miller, J.J., 1987, Subpopulations of fetal hippocampal neurons can be localized immunohistochemically after transplantation into the hippocampal CA1 region irreversibly damaged by cerebral ischemia, Can. J. Physiol. Pharmacol, 65(5):Axxiv.Google Scholar
  15. Mudrick, L.A., Leung, P.P.-H., Baimbridge, K.G., and Miller, J.J., 1988, Neuronal transplants used in the repair of acute ischemic injury in the central nervous system, Prog. Brain Res, 78: 87.PubMedCrossRefGoogle Scholar
  16. Mudrick, L.A., Baimbridge, K.G., and Peet, M.J., 1989, Hippocampal neurons transplanted into ischemically lesioned hippocampus: electroresponsiveness and reestablishment of circuitries, Exp. Brain Res, 76: 333.PubMedCrossRefGoogle Scholar
  17. Nadler, J.V., Evenson, D.A., and Cuthbertson, G.J., 1981, Comparative toxicity of kainic acid and other acidic amino acids toward rat hippocampal neurons, Neuroscience, 6: 2505.PubMedCrossRefGoogle Scholar
  18. Nieto-Sampedro, M., Whittemore, S.R., Needels, D.L., Larson, J., and Cotman, C.W., 1984, The survival of brain transplants is enhanced by extracts from injured brain, Proc. Natl. Acad. Sci. USA, 81: 6250.PubMedCrossRefGoogle Scholar
  19. Nothias, F., Onteniente, B., Geffard, M., and Peschanski, M., 1988, Rapid growth of host afferents into fetal thalamic transplants, Brain Res, 463: 341.PubMedCrossRefGoogle Scholar
  20. Peschanski, M., and Isacson, O., 1988, Fetal homotypic transplant in the excitotoxically neuron-depleted thalamus: Light microscopy, J. Comp. Neurol, 274: 449.PubMedCrossRefGoogle Scholar
  21. Pohle, W., 1987, Transplantation of dentate granular cells after lesion of the dentate area by colchicine, Biomed. Biochem. Acta, 46: 795.Google Scholar
  22. Pritzel, M., Isacson, O., Brundin, P., Wiklund, L., and Björklund, A., 1986, Afferent and efferent connections of striatal grafts implanted into the ibotenic acid lesioned neostriatum in adult rats, Exp. Brain Res, 65: 112.PubMedCrossRefGoogle Scholar
  23. Pulsinelli, W.A., and Brierley, J.B., 1979, A new model of bilateral hemispheric ischemia in unanesthetized rat, Stroke, 10: 267.PubMedCrossRefGoogle Scholar
  24. Schwarcz, R., Köhler, C., Fuxe, K., Hökfelt, T., and Goldstein, M., 1979, On the mechanism of selective neuronal degeneration in the rat brain: Studies with ibotenic acid, Adv. Neurol, 23: 655.Google Scholar
  25. Sunde, N.A., and Zimmer, J., 1983, Cellular, histochemical and connective organization of the hippocampus and fascia dentata transplanted to different regions of immature and adult rat brains, Dev. Brain Res, 8: 165.CrossRefGoogle Scholar
  26. Sunde, N., Laurberg, S., and Zimmer, J., 1984, Brain grafts can restore irradiation-damaged neuronal connections in newborn rats, Nature, 310: 51.PubMedCrossRefGoogle Scholar
  27. Sunde, N., Zimmer, J., and Laurberg, S., 1985, Repair of neonatal irradia- tion-induced damage to the rat fascia dentata. Effects of delayed intracerebral transplantation, in: “Neural Grafting in the Mammalian CNS”, A. Björklund and U. Stenevi, eds., Elsevier, Amsterdam.Google Scholar
  28. Sorensen, T., Jensen, S., Moller, A., and Zimmer, J., 1986, Intracephalic transplants of freeze-stored rat hippocampal tissue, J. Comp. Neurol, 252: 468.PubMedCrossRefGoogle Scholar
  29. Sorensen, T., Finsen, B., and Zimmer, J., 1987, Nerve connections between mouse and rat hippocampal brain tissue: Ultrastructural observations after intracerebral xenografting, Brain Res, 413: 392.PubMedCrossRefGoogle Scholar
  30. Sorensen, T., and Zimmer, J., 1988a, Ultrastructural organization of normal and transplanted rat fascia dentata: I. A qualitative analysis of intracerebral and intraocular grafts, J. Comp. Neurol, 267: 15.PubMedCrossRefGoogle Scholar
  31. Sorensen, T., and Zimmer, J., 1988b, Ultrastructural organization of normal and transplanted rat fascia dentata: II. A quantitative analysis of the synaptic organization of intracerebral and intraocular grafts, J. Comp. Neurol, 267: 43.PubMedCrossRefGoogle Scholar
  32. Tønder, N., Gaarskjaer, F.B., Sunde, N.A., and Zimmer, J., 1986, Neonatal hippocampal neurons, retrogradely labeled with Granular Blue, survive intracerebral grafting and explantation to tissue culture, Exp. Brain Res, 65: 213.PubMedCrossRefGoogle Scholar
  33. Tinder, N., Sorensen, J.C., Bakkum, E., Danielsen, E., and Zimmer, J., 1988, Hippocampal neurons grafted to newborn rats establish efferent commissural connections, Exp. Brain Res, 72: 577.Google Scholar
  34. Tønder, N., Sorensen, T., Zimmer, J., Jorgensen, M.B., Johansen, F.F., and Diemer, N.H., 1989a, Neural grafting to ischemic lesions of the adult rat hippocampus, Exp. Brain Res, 74: 512.PubMedCrossRefGoogle Scholar
  35. Tender, N., Sorensen, T., and Zimmer, J., 1989b, Enhanced host perforant path innervation of neonatal dentate tissue after grafting to axon-sparing, ibotenic acid lesions in adult rats, Exp. Brain Res, 75: 483.Google Scholar
  36. Tønder, N., Sorensen, T., and Zimmer, J., 1989c, Grafting of fetal CA3 neurons to excitotoxic, axon-sparing lesions of the hippocampal CA3 area in adult rats. Prog. Brain Res., in press.Google Scholar
  37. Whittemore, S.R., Nieto-Sampedro, M., Needels, D.L., and Cotman, C.W., 1985, Neuronotrophic factors for mammalian brain neurons: Injury induction in neonatal, adult and aged rat brain, Dev. Brain Res, 20: 169.CrossRefGoogle Scholar
  38. Wictorin, K., Isacson, O., Fischer, W., Nothias, F., Peschanski, M., and Björklund, A., 1988, Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum - I. Subcortical afferents, Neuroscience, 27: 547.Google Scholar
  39. Zhou, C.-F., Raisman, G., and Morris, R.J., 1985, Specific patterns of fibre outgrowth from transplants to host mice hippocampi, shown immunohistochemically by the use of allelic forms of Thy-1, Neuroscience, 16: 819.PubMedCrossRefGoogle Scholar
  40. Zimmer, J., and Sunde, N., 1984, Neuropeptides and astroglia in intracerebral hippocampal transplants: An immunohistochemical study in the rat, J. Comp. Neurol, 227: 331.PubMedCrossRefGoogle Scholar
  41. Zimmer, J., Sunde, N., Sorensen, T., Jensen, S., Moller, A.G., and Gähwiler, B.H., 1985, The hippocampus and fascia dentata. An anatomical study of intracerebral transplants and intraocular and in vitro cultures, in: “Neural Grafting in the Mammalian CNS”, A. Björklund and U. Stenevi, eds., Elsevier, Amsterdam.Google Scholar
  42. Zimmer, J., Laurberg, S., and Sunde, N., 1986, Non-cholinergic afferents determine the distribution of the cholinergic septohippocampal projection: A study of the AChE staining pattern in the rat fascia dentata and hippocampus after lesions, X-irradiation, and intracerebral grafting, Exp. Brain Res, 64: 158.PubMedCrossRefGoogle Scholar
  43. Zimmer, J., Finsen, B., Sorensen, T., and Sunde, N., 1987, Hippocampal transplants: Synaptic organization, their use in repair of neuronal circuits and mouse to rat xenografting, in: “NATO ASI Series H, Vol. 2: Glial-Neuronal Communication in Development and Regeneration”, H.H. Althaus and W. Seifert, eds., Springer-Verlag, Heidelberg.Google Scholar
  44. Zimmer, J., Finsen, B., Sorensen, T., and Poulsen, P.H., 1988a, Xenografts of mouse hippocampal tissue. Exchange of laminar and neuropeptide specific nerve connections with the host rat brain, Brain Res. Bull, 20: 369.PubMedCrossRefGoogle Scholar
  45. Zimmer, J., Finsen, B., Sorensen, T., and Poulsen, P.H., 1988b, Xenografts of mouse hippocampal tissue. Formation of nerve connections between the graft fascia dentata and the host rat brain, Prog. Brain Res, 78: 271.PubMedCrossRefGoogle Scholar
  46. Zimmer, J., Finsen, B., Sorensen, T., Sunde, N.A., and Poulsen, P.H., 1988c, Brain grafts: A survey with examples of repair and xenografting of hippocampal tissue, in: “Recovery of Function in the Nervous System, Fidia Research Series, 13”, F. Cohadon and J. Lobo Antunes, eds., Liviana Press, Padova.Google Scholar
  47. Zimmer, J., Tønder, N., and Sorensen, T., 1989, Hippocampus and fascia dentata transplants: Anatomical organization and connections, in: “The Hippocampus, New Vistas”, V. Chan-Palay and C. Köhler, eds., Alan R. Liss, Inc., New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Niels Tønder
    • 1
  • Torben Sørensen
    • 1
  • Flemming Fryd Johansen
    • 2
  • Jens Zimmer
    • 1
  1. 1.PharmaBiotec, Institute of NeurobiologyUniversity of AarhusDenmark
  2. 2.PharmaBiotec, Institute of NeuropathologyUniversity of CopenhagenDenmark

Personalised recommendations