Modulation of the Induction of Long-Term Potentiation in the Hippocampus

  • B. R. Sastry
  • H. Maretic
  • W. Morishita
  • Z. Xie
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)


In 1894, in his Croonian lecture to the British Royal Society, Ramon y Cajal suggested that learning induces morphological changes at junctions between neurons and that these structural changes form the basis for memory. Hebb (1949) postulated that synaptic strengthening occurs during coincident activity in pre- and post-synaptic elements and that this strengthening forms the basis for learning and memory. This hypothesis of Hebb or a modification of it is generally used to describe the cellular mechanisms of learning and memory. Bliss and Lømo (1973) showed that a transient tetanic stimulation of afferents in the hippocamppus resulted in a post-tetanic long-term potentiation (LTP) of the postsynaptic responses to the same afferent stimulation. LTP is generally thought to be associated with learning and memory although there is no clear evidence in support of this idea.


Nerve Growth Factor Hippocampal Slice Presynaptic Terminal Stratum Radiatum Tetanic Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alger, B. E., McCarren, M. and Fisher, R. S., 1983, On the possibility of simultaneously recording from two cells with a single microelectrode in the hippocampal slice, Brain Res., 270: 137–141.PubMedCrossRefGoogle Scholar
  2. Bliss, T. V. P. and Lpimo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. (Lond.), 232: 331–356.Google Scholar
  3. Carlstedt, T., 1985, Regenerating axons from nerve terminals at astrocytes, Brain Res., 347: 188–181.PubMedCrossRefGoogle Scholar
  4. Casullo, J. and krnjevic, K., 1987, Glial potentials in hippocampus, Can. J. Physiol. Pharma col., 65: 847–855.CrossRefGoogle Scholar
  5. Chang, F.-L. F., Hwang, M., Isaacs, K. R. and Greenough, W. T., 1986, Morphological effects of LTP studied with rapid freezing and freeze substitution in rat hippocampal slice, Soc. Neurosci. Abstr., 12: 506.Google Scholar
  6. Charriault-Marlangue, C., L. Aniksztejn, L., Roisin, M. P. and Ben-Ari, Y., 1988, Release of proteins during long-term potentiation in the hippocampus of the anaesthetized rat, Neurosci. Lett., 91: 308–314.CrossRefGoogle Scholar
  7. Cherubini, E., Ben Ari, Y., Goh, M., Bidard, J. N. and Lazdunski, M., 1987, Long-term potentiation of synaptic transmission in the hippocampus induced by a bee venom peptide, Nature, 328: 70–73.PubMedCrossRefGoogle Scholar
  8. Chirwa, S. S. and Sastry, B. R., 1987, Chemical and post-synaptic modulation of the induc tion of synaptic potentiation in guinea pig hippocampus in vitro., J. Physiol. (Lond.), 386: 29 P.Google Scholar
  9. Collingridge, G. L., Kehl, S. J. and McLennan, H., 1983, Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus, J. Physiol. (Lond.), 334: 33–46.Google Scholar
  10. Cremins, J. Wagner, J. A. and Halegoua, S., 1986, Nerve growth factor action is mediated by cyclic AMP- and Ca-phospholipid-dependent protein kinases, J. Cell Biol., 103: 887–893.PubMedCrossRefGoogle Scholar
  11. Crutcher, K. A. and Collins, F., 1986, Entorhinal lesions result in increased nerve growth factor-like growth-promoting activity in medium conditioned by hippocampal slices, Brain Res., 399: 383–389.PubMedCrossRefGoogle Scholar
  12. Duffy, C. J., Teyler, T. J. and Shashoua, V. E., 1981, Long-term potentiation in the hip pocampal slices: evidence for stimulated secretion of newly synthesized proteins, Science, 212: 1148–1151.PubMedCrossRefGoogle Scholar
  13. Eccles, J. C., 1983, Calcium in long-term potentiation as a model for memory, Neuros cience, 10: 1071–1081.CrossRefGoogle Scholar
  14. Fifkova, E. and Anderson, C. L., 1981, Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer, Exp. Neurol., 74: 621–627.PubMedCrossRefGoogle Scholar
  15. Fifkova, E. and Van Harreveld, A., 1977, Long-lasting morphological changes in dendritic spines of dentate granule cells following stimulation of the entorhinal region, L Neurocytology, 6: 211–230.CrossRefGoogle Scholar
  16. Forsythe, I. D., Westbrook, G. L. and Mayer, M. L, 1988, Modulation of excitatory synaptic transmission by glycine and zinc in cultures of hippocampal neurons, J. Neurosci., 8: 3733–3741.PubMedGoogle Scholar
  17. Gage, F. H., Bjorklund, A. and Steveni, U., 1984, Denervation releases a neuronal survival factor in adult rat hippocampus, Nature, 308: 637–639.PubMedCrossRefGoogle Scholar
  18. Geinisman, Y., Morrell, F. and deToledo-Morrell, 1988, Modelling of synaptic architecture during hippocampal “kindling”, Proc. Natl. Acad. Sci. USA, 85: 3260–3264.PubMedCrossRefGoogle Scholar
  19. Goh, J. W. and Sastry, B. R., 1985, Interactions among presynaptic fiber terminals in the CA1 region of the rat hippocampus, Neurosci. Lett., 60: 157–162.PubMedCrossRefGoogle Scholar
  20. Gustafsson, B. and Wigstrom, H., 1986, Hippocampal long-lasting potentiation produced by pairing single volleys and brief conditioning tetani evoked in separate afferents, J. Neurosci., 6: 1575–1582.PubMedGoogle Scholar
  21. Gustafsson, B. H. and Wigstrom, H., 1988, Physiological mechanisms underlying long-term potentiation, Trends in Neurosciences, 11: 156–162.PubMedCrossRefGoogle Scholar
  22. Harris, K. M., Jensen, F. E. and Tsao, B., 1987, Development of hippocampal synapses, spines and LTP, Soc. Neurosci. Abstr., 13: 1429.Google Scholar
  23. Hebb, D. O., 1949, The organization of behavior, John Wiley & Sons.Google Scholar
  24. Hefti, F. and Weiner, W. J., 1986, Nerve growth factor and Alzheimer’s disease, Ann. Neurol., 20: 275–281.PubMedCrossRefGoogle Scholar
  25. Hendry, I. A., Stokel, K., Thoenen, H. and Iversen, L. L., 1974, The retrograde axonal transport of nerve growth factor, Brain Res., 68: 103–121.PubMedCrossRefGoogle Scholar
  26. Hesse, G. W., Hofstein, R. and Shashoua, V. E., 1984, Protein release from hippocampus in vitro, Brain Res., 305: 61–66.PubMedCrossRefGoogle Scholar
  27. Ishii, D. N., 1982, Effect of the suspected tumor promoters saccharin, cyclamate, and phenol on nerve growth factor binding and response in cultured embryonic chick ganglia, Cancer Res., 42: 429–432.PubMedGoogle Scholar
  28. Kelso, S. R. and Brown, T. H., 1986, Differential conditioning of associative synaptic enhancement in hippocampal brain slices, Science, 232: 85–87.PubMedCrossRefGoogle Scholar
  29. Kelso, S. R., Ganong, A. H. and Brown, T. H., 1986, Hebbian synapses in hippocampus, Proc. Natl. Acad. Sci. USA, 83: 5326–5330.PubMedCrossRefGoogle Scholar
  30. Korsching, S., Auburger, G., Heumann, R., Scott, J. and Thoenen, H., 1985, Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation, Eur. Med. Biol. Organization J., 4: 1389–1393.Google Scholar
  31. Lee, K. S., 1982, Sustained enhancement of evoked potentials following brief, high-fre quency stimulation of the cerebral cortex in vitro, Brain Res., 239: 617–623.PubMedCrossRefGoogle Scholar
  32. Lee, K. S., 1983, Cooperativity among afferents for the induction of long-term potentiation in the CA1 region of the hippocampus, J. Neurosci., 3: 1363–1372.Google Scholar
  33. Lee, K., Oliver, M., Schottler, F. and Lynch, G., 1981, In: Electrophysiology of isolated mammalian CNS preparations, Eds. G.A. Kerkut and H.V. Wheal, Academic press NY, pp. 189–211.Google Scholar
  34. Lewis, D. and Teyler, T. J., 1986, Anti-S-100 serum blocks long-term potentiation in the hippocampal slice, Brain Res., 383: 159–164.PubMedCrossRefGoogle Scholar
  35. Lindsay, R. M., 1979, Adult rat brain astrocytes support survival of both NGF dependent and NGF-insensitive neurons, Nature, 282: 80–82.PubMedCrossRefGoogle Scholar
  36. MacDermott, A. B., Meyer, M. L., Westbrook, G. L., Smith, S. J. and Barker, J. L., 1986, NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons, Nature, 321: 519–522.PubMedCrossRefGoogle Scholar
  37. Malinow, R. and Miller, J. P., 1986, Post-synaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation, Nature, 320: 529–530.PubMedCrossRefGoogle Scholar
  38. McNaughton, B. L., 1982, Long-term synaptic enhancement and short-term potentiation in rat fasia dentata act through different mechanisms, J. Physiol. (Lond.), 324: 249–262.Google Scholar
  39. McNaughton, B. L. and Barnes, C. A., 1977, Physiological identification and analysis of dentate granule cell responses to stimulation of the medial and lateral perforant pathways in the rat, J. Comp. Neurol., 175: 439–454.PubMedCrossRefGoogle Scholar
  40. Morishita, W. and Sastry, B. R., 1989, Unpublished observations.Google Scholar
  41. Needels, D. L., Nieto-Sampedro, M. and Cotman, C. W., 1986, Induction of a neuritepromoting factor in rat brain following injury or deafferenation, Neuroscience, 18: 517–526.PubMedCrossRefGoogle Scholar
  42. Nieto-Sampedro, M. and Cotman, C. W., 1985, Growth factor induction and temporal order in central nervous system repair. In: Synaptic Plasticity, Ed. C.W.Cotman, Guilford press, NY. pp. 407–456.Google Scholar
  43. Nystrom, B. Hamberger, A. and Karlsson, J.-O., 1986, Changes of extracellular proteins in hippocampus during depolarization, Neurochem. Inn., 1: 55–59.Google Scholar
  44. Ojika, K. and Appel, S. H., 1984, Neurotrophic effects of hippocampal extracts on medial septal nucleus in vitro, Proc. Natl. Acad. Sci. USA, 81: 2561–2571.CrossRefGoogle Scholar
  45. Perrone-Bizzozero, N. I. Finklestein, S. P. and Benowitz, L. I., 1986, Synthesis of a growth-associated protein by embryonic rat cerebrocortical neurons in vitro, J. Neurosci., 6: 3721–3730.PubMedGoogle Scholar
  46. Racine, R. J., Milgram, N. W. and Hafner, S., 1983, Long-term potentiation phenomena in the rat limbic forebrain, Brain Res., 260: 217–231.PubMedCrossRefGoogle Scholar
  47. Sastry, B. R., 1988, Unpublished observations.Google Scholar
  48. Sastry, B. R., Goh, J. W. and Auyeung, A., 1986, Associative induction of posttetanic and long-term potentiation in CA1 neurons of rat hippocampus, Science, 232: 988–990.PubMedCrossRefGoogle Scholar
  49. Sastry, B. R., Chirwa, S. S., May, P. B. Y., Maretic, H., Pillai, G., Kao, E. Y. H. and Sidhu, S. D., 1988a, Are nerve growth factors involved in long-term synaptic potentiation in the hippocampus and spatial memory? In: Synaptic plasticity in the hippocam pus, Eds. H. Haas and G. Buzsaki, Springer-Verlag, Berlin, pp. 102–105.CrossRefGoogle Scholar
  50. Sastry, B. R., Chirwa, S. S., May, P. B. Y. and Maretic H., 1988b, Substances released during tetanic stimulation of rabbit neocortex induce neurite growth in PC-12 cells and long-term potentiation in guinea pig hippocampus, Neurosci. Lett., 91: 101–105.PubMedCrossRefGoogle Scholar
  51. Sastry, B. R., Goh, J. W., May, P. B. Y. and Chirwa, S. S., 1988c, The involvement of non-spiking cells in long-term potentiation of synaptic transmission in the hippocampus, Can. J. Physiol. Pharmacol., 66: 841–844.PubMedCrossRefGoogle Scholar
  52. Sastry, B. R., Maretic, H., Morishita, W. and Xie, Z., 1989a, Unpublished observations.Google Scholar
  53. Sastry, B. R., Hansen, S., Maretic, H., Morishita, W. Perry, T. L. and Xie, Z., 1989b, Unpublished observations.Google Scholar
  54. Shashoua, V. E., 1979, Brain metabolism and the acquisition of new behaviors III. Evidence for secretion of two proteins into the brain extracellular fluid after training, Brain Res., 166: 349–358.PubMedCrossRefGoogle Scholar
  55. Springer, J. E. and Loy, R., 1985, Intrahippocampsl injections of antiserum to nerve growth factor inhibit sympathohippocampal sprouting, Brain Res. Bull., 15: 629–634.PubMedCrossRefGoogle Scholar
  56. Stanton, P. K. and Sarvey, J. M., 1984, Blockade of long-term potentiation in rat hippocam pal CA1 region by inhibitors of protein systhesis, J. Neurosci., 4: 3080–3088.PubMedGoogle Scholar
  57. Stanton, P. K., Sarvey, J. M. and Moskal, J. R., 1987, Inhibition of the production and maintenance of long-term potentiation in rat hippocampal slices by a monoclonal antibody, Proc. Natl. Acad. Sci. USA, 84: 1684–1688.PubMedCrossRefGoogle Scholar
  58. Van Harreveld, A. and Fifkova, E., 1975, Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation, Exp. Neurol., 49: 736–749.PubMedCrossRefGoogle Scholar
  59. Varon, S. S. and Somjen, G. G., 1979, Neuron-glia interactions, In: Neurosciences Pro gramme Bulletin, 17:1–239, MIT press.Google Scholar
  60. Will, B. and Hefti, F., 1985, Behavioral and neurochemical effects of chronic intravenous injections of nerve growth factor in adult rats with fimbria lesions, Behay. Brain Res., 17: 17–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • B. R. Sastry
    • 1
  • H. Maretic
    • 1
  • W. Morishita
    • 1
  • Z. Xie
    • 1
  1. 1.Neuroscience Research Laboratory, Department of Pharmacology & TherapeuticsThe University of British ColumbiaVancouverCanada

Personalised recommendations