Advertisement

The Role of Protein Kinase C Substrate B-50 (GAP-43) in Neurotransmitter Release and Long-Term Potentiation

  • P. N. E. De Graan
  • L. H. Schrama
  • F. M. J. Heemskerk
  • L. V. Dekker
  • W. H. Gispen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)

Abstract

Long-term potentiation (LTP) is a form of synaptic plasticity, which may be one of the events underlying learning and memory. LTP is triggered by brief, high-frequency stimulation of afferents, resulting in a long-lasting increase in the effectiveness of synaptic transmission (Bliss and Lomo, 1973; Bliss and Lynch, 1988; Brown et al., 1988; Matthies, 1989). Traditionally, LTP has been divided into two phases, the initiation phase and the maintenance phase. At present, three phases can be distinguished: (i) an initiation phase, including several seconds after tetanic stimulation when the events that trigger LTP begin; (ii) a transient phase, lasting about 30 min, during which there is a slow decay of potentiation, which can be evoked by local transmitter application without stimulating the presynaptic terminal; and (iii) a maintenance phase, which can last for hours (Kauer et al., 1988; Malinow et al., 1988a).

Keywords

Hippocampal Slice Phorbol Ester Neurotransmitter Release Transmitter Release Population Spike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akers, R.F., Lovinger, D.M., Colley, P.A., Linden, D.J. and Routtenberg, A., 1986, Translocation of protein kinase C activity may mediate hippocampal long-term potentiation, Science 231: 587–589.PubMedCrossRefGoogle Scholar
  2. Alexander, K.A., Cimler, B.M., Meier, K.E. and Storm, D.R., 1987, Regulation of calmodulin binding to P-57, J.Biol.Chem. 262: 6108–6113.PubMedGoogle Scholar
  3. Allgaier, C. and Hertting, G., 1986, Polymyxin B, a selective inhibitor of protein kinase C, diminishes the release of noradrenaline and the enhancement of release caused by phorbol 12,13-dibutyrate, Naunyn-Schmiedeberg’s Arch. Pharmacol. 334: 218–221.PubMedCrossRefGoogle Scholar
  4. Allgaier, C., Von Kugelgen, O. and Hertting, G., 1986, Enhancement of noradrenaline release by 120-tetradecanoyl phorbol-13-acetate, an activator of protein kinase C. Eur. J. Pharmacol. 129: 389–392.PubMedCrossRefGoogle Scholar
  5. Aloyo, V.J., Zwiers, H. and Gispen, W.H., 1980, Phosphorylation of B-50 by calcium-activated, phospholipid-dependent protein kinase and B-50 kinase, J.Neurochem. 41: 649–653.CrossRefGoogle Scholar
  6. Andreasen, T.J., Luetje, C.W., Heideman, W. and Storm, D.R., 1983, Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes, Biochemistry 22: 4615–4618.PubMedCrossRefGoogle Scholar
  7. Bartmann, P., Jackisch, R., Hertting, G. and Allgaier, C., 1989, A role for protein kinase C in the electrically evoked release of [3H] -aminobutyric acid in rabbit caudate nucleus, Naunyn-Schmiedeberg’s Arch. Pharmacol. 339: 302–305.PubMedGoogle Scholar
  8. Benfenati, F., Bahler, M., Jahn, R. and Greengard, P., 1989, Interactions of synaptsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins, J.Cell Biol. 108: 1863–1872.PubMedCrossRefGoogle Scholar
  9. Benowitz, L.I. and Routtenberg, A., 1987, A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism and synaptic plasticity, Trends Neurosci. 10: 527–532.CrossRefGoogle Scholar
  10. Benowitz, L.I., Apostolides, P.J., Perrone-Bizzozero, N., Finklestein, S.P. and Zwiers, H., 1988, Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain, J.Neurosci. 8: 339–352.PubMedGoogle Scholar
  11. Bliss, T.V.P. and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dendate area of the anaesthesized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232: 331–356.Google Scholar
  12. Bliss, T.V.P. and Lynch, M.A., 1988, Long-term potentiation of synaptic transmission in the hippocampus: properties and mechanisms, In: Long-Term Potentiation: from Biophysics to Behaviour (eds. P.W. Landfield and S.A. Deadwyler ), A. Liss, New York, pp. 3–72.Google Scholar
  13. Brown, T.H., Chapman, P.F., Kairiss, E.W. and Keenan, C.L., 1988, Long-term synaptic potentiation, Science 242: 724–728.PubMedCrossRefGoogle Scholar
  14. Cimler, B.M., Giebelhaus, D.H., Wakim, B.T., Storm, D.R. and Moon, R.T., 1987, Characterization of murine cDNAs encoding P-57, a neural-specific calmodulin-binding protein, J.Biol.Chem. 262: 12158–12163.PubMedGoogle Scholar
  15. Coggins, P.J. and Zwiers, H., 1988, Evidence for a single phosphorylation site in neuronal protein B-50, Soc.Neurosci.Abstr. 14: 452. 7.Google Scholar
  16. Cotman, C.W., Haycock, J.W. and White, W.F., 1976, Stimulus-secretion coupling processes in brain: analysis of noradrenaline and gamma-aminobutyric acid, J.Physiol.(London) 254: 475–505.Google Scholar
  17. Damsma, G., Biessels, P.T.M., Westerink, B.H.C., De Vries, J.B. and Horn, A.S., 1988, Differential effects of 4-aminopyridine and 2,4-diaminopyridine on the in vivo release of acetylcholine and dopamine in freely moving rats measured by intrastriatal dialysis, Eur. J. Pharmacol. 145: 15–20.PubMedCrossRefGoogle Scholar
  18. Davies, S.N., Lester, R.A., Reymann, K. and Collingridge, G.L., 1989, Temporally distinct pre-and postsynaptic mechanisms maintain long-term potentiation. Nature 338: 500–503.PubMedCrossRefGoogle Scholar
  19. De Graan, P.N.E., Dekker, L.V., De Wit, M., Schrama, L.H. and Gispen, W.H., 1988a, Modulation of B-50 phosphorylation and polyphosphoinositide metabolism in synaptic plasma membranes by protein kinase C, phorbol diesters and ACTH. J. Rec. Res. 8: 345–361.Google Scholar
  20. De Graan, P.N.E., Heemskerk, F.M.J., Dekker, L.V., Melchers, B.P.C., Gianotti, C. and Schrama, L.H., 1988b, Phorbol esters induce long-and short-term enhancement of B-50/GAP-43 phosphorylation in rat hippocampal slices, Neurosci. Res. Commun. 3: 175–182.Google Scholar
  21. De Graan, P.N.E., Dekker, L.V., Oestreicher, A.B., Van der Voorn, L. and Gispen, W.H., 1989a, Determination of changes in the phosphorylation state of the neuron-specific protein kinase C substrate B-50 (GAP-43) by quantitative immunoprecipitation. J. Neurochem. 52: 17–23.PubMedCrossRefGoogle Scholar
  22. Dekker, L.V., De Graan, P.N.E., Versteeg, D.H.G., Oestreicher, A.B. and Gispen, W.H., 1989a, Phosphorylation of B-50 (GAP-43) is correlated with neurotransmitter release in rat hippocampal slices. J. Neurochem. 52: 24–30.PubMedCrossRefGoogle Scholar
  23. Dekker, L.V., De Graan, P.N.E., De Wit, M., Hens, J.J.H. and Gispen, W.H., 1989b, Depolarization-induced phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat cortical synaptosomes, J.Neurochem., in press.Google Scholar
  24. Dekker, L.V., De Graan, P.N.E., Oestreicher, A.B., Versteeg, D.H.G. and Gispen, W.H., 1989c, Inhibition of noradrenaline release by antibodies to B-50 (GAP-43), Nature: in press.Google Scholar
  25. Dole al, V. and Tuçek, S., 1983, The effects of 4-aminopyridine and tetrodotoxin on the release of acetylcholine from rat striatal slices. Naunyn-Schmiedeberg’s Arch. Pharmacol. 323: 90–95.CrossRefGoogle Scholar
  26. Dolphin, A.C., Errington, M.L. and Bliss, T.V.P., 1982, Long-term potentiation of the perforant path in vivo is associated with increased glutamate release, Nature 297: 496–498.PubMedCrossRefGoogle Scholar
  27. Eichberg, J., De Graan, P.N.E., Schrama, L.V., and Gispen, W.H., 1986, Dioctanoylglycerol and phorbol diesters enhance phosphorylation of phosphoprotein B-50 in native synaptic plasma membranes, Biochem.Biophys.Res.Communn. 136: 1007–1012.CrossRefGoogle Scholar
  28. Forscher, P., 1989, Calcium and phosphoinositide control of cytoskeletal dynamics, Trends Neurosci., in press.Google Scholar
  29. Gibson, G.E. and Manger, T., 1988, Changes in cytosolic free calcium by 1,2,3,4-tetrahydro-5aminoacridine, 4-aminopyridine and 3,4-diaminopyridine, Biochem. Pharmacol. 37: 4191–4196.PubMedCrossRefGoogle Scholar
  30. Gispen, W.H., Leunissen, J.L.M., Oestreicher, A.B., Verkleij, A.J. and Zwiers, H., 1985, Presynaptic localization of B-50 phosphoprotein: the (ACTH)-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism, Brain Res. 328: 381–385.PubMedCrossRefGoogle Scholar
  31. Gispen, W.H., De Graan, P.N.E., Schrama, L.H. and Eichberg, J., 1986, Phosphoprotein B-50 and polyphosphoinositide-dependent signal transduction in brain. In: Phospholipids in the Nervous System: Biochemical and Molecular Pharmacology (Eds. L.A. Horrocks, L. Freysz and G. Toffano), Fidia Research Series, Vol. 4, pp. 31–41, Liviana Press, Padova.CrossRefGoogle Scholar
  32. Gustafsson, B., Galvan, M., Grafe, P. and Wigstrom, H., 1982, A transient outward current in a mammalian central neurone blocked by 4-aminopyridine, Nature (Lond.) 299: 252–254.CrossRefGoogle Scholar
  33. Gustafsson, B., Huang, Y.Y. and Wigstrom, H., 1988, Phorbol ester-induced synaptic potentiation differs from long-term potentiation in the guinea pig hippocampus in vitro, Neurosc.Lett. 85: 77–81.CrossRefGoogle Scholar
  34. Haas, H.L. and Greene, R.W., 1985, Long-term potentiation and 4-aminopyridine, Cell. Mol. Neurobiol. 5: 297–301.PubMedCrossRefGoogle Scholar
  35. Heemskerk, F.M.J., Schrama, L.H., Gianotti, C., Spierenburg, H., Versteeg, D.H.G. and Gispen, W.H., 1989a, 4-Aminopyridine stimulates B-50 (GAP-43) phosphorylation and [3H]noradrenaline release in rat hippocampal slices, J. Neurochem., in press.Google Scholar
  36. Heemskerk, F.M.J., Schrama, L.H. and Gispen, W.H., 1989b, Activation of protein kinase C by 4-aminopyridine dependent on Na+ channel activity in rat hippocampal slices, Neurosci. Lett., in press.Google Scholar
  37. Heemskerk, F.M.J., Schrama, L.H., De Graan, P.N.E., Ghijsen, W.E.J.M., Lopes da Silva, F.H. and Gispen W.H., 1989c, 4-Aminopyridine increases B-50 (GAP-43) phosphorylation and calcium levels in rat brain synaptosomes, Soc. Neurosci. Abstr. 15:189.15.Google Scholar
  38. Heemskerk, F.M.J., Schrama, L.H., De Graan, P.N.E. and Gispen, W.H., 1989d, 4-Aminopyridine stimulates B-50 (GAP-43) phosphorylation in rat brain synaptosomes, J. Mol. Neurosci., in press.Google Scholar
  39. Hu, G.-Y., Hvalby, O., Walaas, S.I., Albert, K.A., Skjeflo, P., Andersen, P. and Greengard, P., 1987, Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation, Nature, 328: 426–429.PubMedCrossRefGoogle Scholar
  40. Izumi, Y., Miyakawa, H., Ito, K. and Kato, H., 1987, Quisqualate and N-methyl-D-aspartate (NMDA) receptors in induction of hippocampal long-term facilitation using conditioning solution, Neurosci. Lett. 83: 201–206.PubMedCrossRefGoogle Scholar
  41. Kaczmarek, L.K., 1987, The role of protein kinase C in the regulation of ion channels and neurotransmitter release. Trends Neurosci. 10: 30–34.CrossRefGoogle Scholar
  42. Kauer, J.A., Malenka, R.C. and Nicoll, R.A., 1988, NMDA application potentiates synaptic transmission in the hippocampus, Nature 334: 249–252.CrossRefGoogle Scholar
  43. Kikkawa, U. and Nishizuka, Y., 1986, The role of protein kinase C in transmembrane signalling. Ann. Rev. Cell Biol. 2: 149–178.PubMedCrossRefGoogle Scholar
  44. Kristjansson, G.I., Zwiers, H., Oestreicher, A.B. and Gispen, W.H., 1982, Evidence that the synaptic phosphoprotein B-50 is localized exclusively in nerve tissue, J. Neurochem. 39: 371–378.PubMedCrossRefGoogle Scholar
  45. Lee, W.-L, Anwyl, R. and Rowan, M., 1986, 4-Aminopyridine-mediated increase in long-term potentiation in CA1 of the rat hippocampus, Neurosci. Lett. 70: 106–109.Google Scholar
  46. Linden, D.J., Wong, K.L., Sheu, F.-S. and Routtenberg, A., 1988, NMDA receptor blockade prevents the increase in protein kinase C substrate (protein Fl) phosphorylation produced by long-term potentiation, Brain Res. 458, 142–146.PubMedCrossRefGoogle Scholar
  47. Linstedt, A.D. and Kelly, R.B., 1989, Overcoming barriers to exocytosis, Trends Neurosci. 10: 446–448.CrossRefGoogle Scholar
  48. Liu, Y. and Storm, D.R., 1989, Dephosphorylation of neuromodulin by calcineurin, J. Biol. Chem., 264: 12800–12804.PubMedGoogle Scholar
  49. Lisman, J.E. and Goldring, M.A., 1988, Feasibility of long-term storage of graded information by the Ca2+/calmodulin dependent protein kinase molecules of postsynaptic density. Proc. Natl. Acad. Sci. 85: 5320–5324.PubMedCrossRefGoogle Scholar
  50. Lovinger, D.M., Akers, R.F., Nelson, R.B., Barnes, C.A., McNaughton, B.L. and Routtenberg, A., 1985, A selective increase in phosphorylation of protein F1, a protein kinase C substrate, directly related to three day growth of long-term potentiation of long term synaptic enhancement, Brain Res. 343: 137–143.PubMedCrossRefGoogle Scholar
  51. Lovinger, D.M., Colley, P.A., Akers, R.F., Nelson, R.B. and Routtenberg, A., 1986, Direct relation of long-term synaptic potentiation to phosphorylation of membrane protein F1, a substrate for membrane protein kinase C, Brain Res. 399: 205–211.PubMedCrossRefGoogle Scholar
  52. Lynch, M.A. and Baudry, M., 1984, The biochemistry of memory: a new and specific hypothesis. Science 224: 1057–1063.PubMedCrossRefGoogle Scholar
  53. Lynch, M.A., Errington, M.L. and Bliss, T.V.P., 1985, Long-term potentiation of synaptic transmission in the dentate gyrus: increased release of [14Cl-glutamate without increase in receptor binding, Neurosci. Lett. 62: 123–129.PubMedCrossRefGoogle Scholar
  54. Malenka, R.C., Madison, D.V. and Nicoll, R.A., 1986, Potentiation of synaptic transmission in the hippocampus by phorbol esters, Nature (Lond.) 321: 175–177.CrossRefGoogle Scholar
  55. Malenka, R.C., Ayoub, G.S. and Nicoll, R.A., 1987, Phorbol esters enhance transmitter release in rat hippocampal slices, Brain Res. 403: 198–203.PubMedCrossRefGoogle Scholar
  56. Malenka, R.C., Kauer, J.A., Perkel, D.J., Mauk, M.D., Kelly, P.T., Nicoll, R.A., and Waxham, M.N., 1989, An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation, Nature 340: 554–557.PubMedCrossRefGoogle Scholar
  57. Malinow, R., Madison, D.V. and Tsien, R.W., 1988a, Persistent protein kinase activity underlying long-term potentiation, Nature 335: 820–824.PubMedCrossRefGoogle Scholar
  58. Malinow, R., Madison, D.V. and Tsien, R.W., 1988b, Selective activation of pre-synaptic protein kinase C enhances synaptic transmission in rat hippocampal slices, Soc. Neurosci. Abstr. 14: 12. 2Google Scholar
  59. Malinow, R., Schulman, H. and Tsien, R.W., 1989, Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP, Science 245: 862–866.PubMedCrossRefGoogle Scholar
  60. Matthies, H., 1989, In search of cellular mechanisms of memory, Progr. Neurobiol. 32: 277–349.CrossRefGoogle Scholar
  61. Matthies, H.J.G., Palfrey, H.C., Hirning, L.D. and Miller, R.J., 1987, Down regulation of protein kinase C in neuronal cells: effects on neurotransmitter release, J. Neurosci. 7: 1198–1206.PubMedGoogle Scholar
  62. Miller, S.G. and Kennedy, M.B., 1986, Regulation of brain type II Cat+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell 44: 861–870.PubMedCrossRefGoogle Scholar
  63. Muller, D., Turnbull, J., Baudry, M. and Lynch, G., 1988, Phorbol ester-induced synaptic facilitation is different than long-term potentiation, Proc. Natl. Acad. Sci. USA 85: 6997–7000.PubMedCrossRefGoogle Scholar
  64. Nelson, R.B., Linden, D.J., Hyman, C., Pfenninger, K.H. and Routtenberg, A., 1989, The two major phosphoproteins in growth cones are probably identical to two protein kinase C substrates correlated with the persistence of long-term potentiation, J. Neurosci. 9: 381–389.PubMedGoogle Scholar
  65. Nicholls, D.G., Sihra, T.S. and Sanchez-Prieto, J., 1987, Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry, J.Neurochem. 49: 50–57.PubMedCrossRefGoogle Scholar
  66. Nicholls, D.G., Tibbs, G. and Barrie, A.P., 1989, Cytosolic free calcium in synaptosomes and its coupling to glutamate exocytosis, J. Neurochem. Suppl. 52: 47D.Google Scholar
  67. O’Brian, C.A., Arthur, W.L. and Weinstein, I.B., 1987, The activation of protein kinase C by the polyphosphoinositides phosphatidylinositol 4,5-diphosphate and phosphatilylinositol 4-monophophate, FEBS Lett. 214: 339–342.PubMedCrossRefGoogle Scholar
  68. Reymann, K.G., Frey, U., Jork, R. and Matthies, H., 1988, Polymyxin B, an inhibitor of protein kinase C, prevents the maintenance of synaptic long-term potentiation in hippocampal CAl neurons, Brain Res. 440: 305–314.PubMedCrossRefGoogle Scholar
  69. Rogawski, M.A. and Barker, J.L., 1983, Effects of 4-aminopyridine on calcium aclazientials and calcium current under voltage clamp in spinal neurons, Brain Res. 280: 180–185.PubMedCrossRefGoogle Scholar
  70. Routtenberg, A., 1985, Protein kinase C activation leading to protein Fl phosphorylation may regulate synaptic plasticity by presynaptic terminal growth, Behay.Neurobiol. 44: 186–200.Google Scholar
  71. Routtenberg, A., Colley, P., Linden, D., Lovinger, D., Murakami, K. and Sheu, F.-S., 1986, Phorbol ester promotes growth of synaptic plasticity. Brain Res. 278: 374–378.CrossRefGoogle Scholar
  72. Schrama, L.H., De Graan, P.N.E., Wadman, W.J., Lopes da Silva, F.H. and Gispen, W.H., 1986, Long-term potentiation and 4-aminopyridine-induced changes in protein and lipid phosphorylation in the hippocampal slice. Progr. Brain Res. 69: 245–257.CrossRefGoogle Scholar
  73. Schrama, L.H., De Graan, P.N.E., Dekker, L.V., Oestreicher, A.B., Nielander, H., Schotman, P. and Gispen, W.H., 1988, Functional significance and localization of phsophosite(s) in the neuron-specific protein B-50/GAP-43, Soc.Neurosci.Abstr. 14: 197. 15.Google Scholar
  74. Schwartz, J.H. and Greenberg, S.M., 1987, Molecular mechanisms for memory: second messenger induced modification of protein kinases in nerve cells, Ann. Rev. Neurosci. 10: 459–476.PubMedCrossRefGoogle Scholar
  75. Segal, M., Rogawski, M.A. and Barker, J.L., 1984, A transient potassium conductance regulates the excitability of cultures hippocampal and spinal neurons, J. Neurosci. 4: 604–609.PubMedGoogle Scholar
  76. Skene, J.H.P., 1989, Axonal growth-associated proteins, Ann. Rev. Neurosci. 12: 127–156.PubMedCrossRefGoogle Scholar
  77. Skene, J.H.P. and Virag, I., 1989, Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43, J.Cell Biol. 108: 613–624.PubMedCrossRefGoogle Scholar
  78. Skrede, K.K. and Malthe-Sorenssen, D., 1981, Increased resting and evoked transmitter release following repetitive electrical tetanization of the hippocampus: a biochemical correlate to long-lasting synaptic potentiation, Brain Res. 208: 436–441.PubMedCrossRefGoogle Scholar
  79. Sörensen, R.G., Kleine, L.P. and Mahler, H.R., 1981, Presynaptic localization of phosphoprotein B50, Brain Res. Bull. 7: 57–61.PubMedCrossRefGoogle Scholar
  80. Stevens, C.F., 1989, Strengthening the synapses, Nature, 338, 460–461.PubMedCrossRefGoogle Scholar
  81. Tapia, R. and Sitges, M., 1982, Effect of 4-aminopyridine on transmitter release in synaptosomes. Brain Res. 250: 291–299.PubMedCrossRefGoogle Scholar
  82. Tapia, R., Sitges, M. and Morales, E., 1985, Mechanism of calcium-dependent stimulation of transmitter release by 4-aminopyridine in synaptosomes. Brain Res. 361: 373–382.PubMedCrossRefGoogle Scholar
  83. Thompson, S.H., 1982, Aminopyridine block of transient potassium current, J. Gen. Physiol. 80: 1–18 (1982).Google Scholar
  84. Tibbs, G.R., Dolly, J.O. and Nicholls, D.G., 1989, Dendrotoxin, 4-aminopyridine and ßbungarotoxin act at common loci but by two distinct mechanism to induce calcium-dependent release of glutamate from guinea pig cerebrocortical synaptosomes, J. Neurochem. 52: 201–206.PubMedCrossRefGoogle Scholar
  85. Van Dongen, C.J., Zwiers, H., De Graan, P.N.E. and Gispen, W.H., 1985, Modulation of the activity of purified phosphatidylinositol 4-phosphate kinase by phosphorylated and dephosphorylated B-50 protein, Biochem.Biophys.Res.Commun. 8: 1219–1227.CrossRefGoogle Scholar
  86. Van Hooff, C.O.M., De Graan, P.N.E., Oestreicher, A.B. and Gispen, W.H., 1988, B-50 phosphorylation and polyphosphoinositide metabolism in nerve growth cone membranes. J. Neurosci. 8: 1789–1795.PubMedGoogle Scholar
  87. Van Hooff, C.O.M., Boonstra, J., Oestreicher, A.B., De Graan, P.N.E., Holthuis, J.C.M. and Gispen, W.H., 1989a, Nerve growth factor-induced changes in the intracellular localization of the protein kinase C substrate B-50 in pheochromocytoma PC12 cells, J.Cell Biol. 108: 1115–1125.PubMedCrossRefGoogle Scholar
  88. Van Hooff, C.O.M., De Graan, P.N.E., Oestreicher, A.B. and Gispen, W.H., 1989b, Muscarinic receptor activation stimulates B-50 phosphorylation in isolated nerve growth cones, J.Neurosci., in press.Google Scholar
  89. Van Lookeren Campagne, M., Oestreicher, A.B., Van Bergen en Henegouwen, P.M.P. and Gispen, W.H., 1989a, Ultrastructural immunocytochemical localization of B-50/GAP43, a protein kinase C substrate, in isolated presynaptic nerve terminals and neuronal growth cones, J. Neurocytol., in press.Google Scholar
  90. Van Lookeren Campagne, M., Oestreicher, A.B., van Bergen Henegouwen, P.M.P. and Gispen, W.H., 1989b, Localization of B-50/GAP-43 and synaptophysin in the neonatal and adult rat brain, Cell Diff.Devel. 27 suppl.:S197.CrossRefGoogle Scholar
  91. Versteeg, D.H.G. and Florijn, W.J., 1986, Phorbol 12; 13-dibutyrate enhances electrically stimulated neuromessenger release from rat dorsal hippocampal slices in vitro, Life Sci. 40: 1237–1243.CrossRefGoogle Scholar
  92. Versteeg, D.H.G. and Ulenkate, H.J.L.M., 1987, Basal and electrically stimulated release of [3H]noradrenaline and [3H]-dopamine from rat amygdala slices in vitro: effects of 413phorbol 12,13-dibutyrate, 4 -phorbol 12,13-didecanoate and polymyxin B, Brain Res. 416: 343–348.PubMedCrossRefGoogle Scholar
  93. Zurgil, N. and Zisapel, N., 1985, Phorbol ester and calcium acts synergistically to enhance neurotransmitter release by brain neurons in culture, FEBS lett. 185: 257–261.PubMedCrossRefGoogle Scholar
  94. Zwiers, H., Schotman, P. and Gispen, W.H., 1980, Purification and some characteristics of an ACTH-sensitive protein kinase and its substrate protein in rat brain membranes, J. Neurochem. 34: 1689–1699.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • P. N. E. De Graan
    • 1
  • L. H. Schrama
    • 1
  • F. M. J. Heemskerk
    • 1
  • L. V. Dekker
    • 1
  • W. H. Gispen
    • 1
  1. 1.Division of Molecular Neurobiology, Rudolf Magnus Institute, Laboratory for Physiological ChemistryInstitute of Molecular Biology and Medical BiotechnologyUtrechtNL

Personalised recommendations