Skip to main content

The Role of Ependymin in Neuronal Plasticity and LTP

  • Chapter
Excitatory Amino Acids and Neuronal Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 268))

Abstract

Ependymin is a brain extracellular glycoprotein that has been implicated in the formation of long-term synaptic changes after learning and neuronal regeneration. It was first identified as a brain protein that became more highly labeled after goldfish learned a new pattern of swimming behavior (Shashoua, 1976, 1977a, 1979). This type of change did not occur in a variety of experiments that controlled for the effects of stress, motor activity and physical strength of the animals (Shashoua, 1977b). Injections of anti-ependymin sera into the 4th ventricle of gold-fish brain at 8–24 hr after initiation of training blocked long-term (LTM) but not short-term memory (Shashoua and Moore, 1978). A blockade of LTM was also obtained for another training procedure in which goldfish learned to avoid a shock by escaping into another compartment in a shuttle box following the onset of a light in an avoidance conditioning experiment (Piront and Schmidt, 1988). More recent studies indicate that ependymin is also involved in classical (Pavlovian) conditioning (Shashoua and Hesse, 1989a). Goldfish were trained in a soundproof light-tight chamber (see Fig. 1) to associate the onset of light as the conditioning stimulus (CS) with the delivery of a shock as the US using the CS-US parameters established by Bitterman (1964). Measurements of the concentration of ependymin in goldfish brain extracts enriched with ECF proteins (Shashoua, 1981) using an ELISA procedure demonstrated that goldfish receiving the CS-US stimuli in a “paired” presentation showed changes whereas the controls receiving the same number of stimuli “unpaired” showed no changes (see Table I) in comparison to unstimulated animals. For the “paired stimulus” group there was an initial decrease at 3.5 hr after the start of the training followed by an increase at 52 hr, a time span that corresponds to the transcription and translation of messenger RNA in goldfish brain (Shashoua, 1970). This type of result was similar to that obtained for goldfish trained to swim with a float (R. Schmidt, 1986). Thus in two separate experiments it is found that ependymin is used up by the CNS as a consequence of the training procedure. The response of the brain is to synthesize and secrete more of the protein into the brain extracellular space. Moreover the quantity of ependymin that is depleted from ECF in a 70-mg goldfish brain is substantial, being about 71.tg for the acquisition of the classical conditioning experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, P., Sundberg, S. H., Swann, J. N., and Wigstrom, H., 1980, Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea pigs, J. Physiol., 302: 463–482.

    Google Scholar 

  • Bitterman, M. E., 1964, Classical conditioning in the goldfish as a function of the CS-US interval, J. Comp. Phys. Psychol., 58: 359–366.

    Article  CAS  Google Scholar 

  • Bliss, T. V. P., Dolphin, A. C., Eryington, M. L., and Fazeli, M. S., 1987, Increases in the concentration of specific extracellular proteins during long-term potentiation in the dentate gyrus of the rat, Proc. Physiol. Soc., 54P:Feb. 13.

    Google Scholar 

  • Bliss, T. V. P., and Lomo, T., 1973, Long-lasting potentiation of/ synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol., 232L: 1–356.

    Google Scholar 

  • Chang, F. L., and Greenough, W. T., 1984, Transient and enduring morphological correlates of synaptic activity and efficacy change in rat hippocampal slice, Brain Res., 309: 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Charriaut-Malangue, C., Aniksztejn, L., Roisin, M. P., and Ben-Ari, Y., 1988, Release of proteins during long-term potentiation in the hippocampus of anaesthetized rat, Neurosci. Let., 91: 308–314.

    Article  Google Scholar 

  • Chou, K. H., Ilyas, A. A., Evans, J. E., Quarles, R. H., and Jungalwala, F. B., 1985, Structure of a glycolipid reacting with monoclonal IgM in neuropathy and with HNK-1, Biochem. Biophys. Res. Comm., 128: 383–388.

    Article  PubMed  CAS  Google Scholar 

  • Connor, J. A., and Alkon, D. L., 1984, Lightand voltage-dependent increases of calcium ion concentration in molluscan photoreceptors, J. Neurophysiol., 51: 745–752.

    PubMed  CAS  Google Scholar 

  • Cotman, C. W., Bridges, R. J., Taube, J. S., Clarke, A. S., Geddes, J. W., and Monaghan, D. T., 1989, The role of NMDA receptor in central nervous system plasticity and pathology, J. NIH Res., 1: 65–74.

    Google Scholar 

  • Duffy, C., Teyler, T. J., and Shashoua, V. E., 1981, Long-term potentiation in the hippocampal slice: Evidence for stimulated secretion of newly synthesized proteins, Science, 212: 1148–1151.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, Y. H., Sinder, R. M., Kornecki, E., Garfield, M. G., and Lenox, R. H., 1988, Modulation of neuronal signal transduction systems by extracellular ATP, J. Neurochem., 50: 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Fazeli, M. S., Errington, M. L., Dolphin, A. C., and Bliss, T. V. P., 1988, Long-term potentiation in the dentate gyrus of the anaesthetized rat is accompanied by an increase in protein efflux into push-pull cannula perfusates, Brain Res., 473: 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg, K. S., Johnsen, J. A., and Levine, M. W., 1984, Common noise in the firing of neighboring ganglion cells in goldfish retina, J. Physiol. ( London ), 351: 433–444.

    Google Scholar 

  • Gordon, J. L., 1986, Extracellular ATP: Effects sources and fate, Biochem. J., 233:309–319. Grafstein, B., 1969, Changes in the morphology and amino acid incorporation of regenerating goldfish optic neurons, Exp. Neurol., 23: 544–560.

    PubMed  CAS  Google Scholar 

  • Grafstein, B., 1969, Changes in the morphology and amino acid incorporation of regenerating goldfish optic neurons, Exp. Neurol., 23: 544–560.

    Google Scholar 

  • Hesse, G. W., Hofstein, R., and Shashoua, V. E., 1984, Protein release from hippocampus in vitro, Brain Res., 305: 61–66.

    Article  PubMed  CAS  Google Scholar 

  • King, J. C., Lechan, R. M., Kugel, G., and Anthony, E. L. P., 1983, J. Histochem. Cytochem., 31: 62–68.

    Google Scholar 

  • Königstorfer, A., Sterrers, S., Eckerskorn, C., Lottspeich, F., Schmidt, R., and Hoffmann, W., 1989

    Google Scholar 

  • Molecular characterization of an ependymin precursor from goldfish brain, J. Neurochem., 52: 310–312.

    Google Scholar 

  • Krnjevic, K., Morris, M. E., and Reiffenstein, R. J., 1982a, + Stimulation-evoked potentiation changes in extracellular K andCa++ in pyramidal layers of the rat’s hippocampus, Can. J. Physiol. Pharmacol., 60: 1643–1657.

    Google Scholar 

  • Krnjevic, K., Morris, M. E., Reiffenstein, R. J. and Ropert, N., 1982b, Depth distribution and mechanism of changes in extracellular K+ andCa++ concentrations in the hippocampus, Can. J. Physiol. Pharmacol., 60: 1658–1671.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. S., Schottler, F., Oliver, M., and Lynch, G., 1980, Brief bursts of high frequency stimulation produce two types of structural change in rat hippocampus, J. Neurophysiol., 44: 274–258.

    Google Scholar 

  • Lynch, G., and Baudry, M., 1984, The biochemistry of memory: A new and specific hypothesis, Science, 224: 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, G., and Schubert, J., 1980, The use of in vitro brain slices for multidisciplinary studies of synaptic functions, Annu. Rev. Neurobiol., 3: 1–22.

    Article  CAS  Google Scholar 

  • Majocha, R. E., Schmidt, R., and Shashoua, V. E., 1982, Cultures of zona ependyma cells of goldfish brain: An immunological study of the synthesis and release of ependymins, J. Neurosci. Res., 8: 331–342.

    Article  PubMed  CAS  Google Scholar 

  • McMahon, U. J., Edgington, D. R., and Kuffler, D. P., 1980, Factors that influence regeneration of the neuromuscular junction, J. Exp. Biol., 89: 31–42.

    Google Scholar 

  • Morris, M. E., Ropert, N., and Shashoua, V. E., 1986a, Stimulus-evoked changes in extracellular calcium in optic tectum of goldfish: Possible role in neuroplasticity, Ann. N.Y. Acad. Sci., 481: 375–377.

    Article  Google Scholar 

  • Morris, R. G. H., Anderson, E., Lynch, G. S., and Baudry, M., 1986b, Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate antagonist AP5, Nature, 319: 774–766.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, K., Chan, S. Y., and Routtenberg, A., 1986, Protein kinase Cactivation by cis-fatty acid in the absence of Ca++ and phospholipids, J. Biol. Chem., 261: 15424–15429.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature, 308: 693–698.

    Article  PubMed  CAS  Google Scholar 

  • Nolan, P., and Shashoua, V. E., 1989, Mechanisms of ependymin phosphorylation in goldfish brain, Neurosci. Abstr., 15: 383. 35.

    Google Scholar 

  • Piront, M. L., and Schmidt, R., 1988, Inhibition of long-term memory formation by anti-ependymin antisera after classical shock avoidance conditioning in goldfish, Brain Res., 442: 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Purves, D., and Lichtman, J. W., 1980, Elimination of synapses in the developing nervous system. Science, 210: 153–157.

    Article  PubMed  CAS  Google Scholar 

  • Sanes, J. R., 1983, Roles of extracellular matrix in neural development, Annu. Rev. Physiol., 45: 581–600.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J. T., 1985, Formation of retinotopic connections: Selective stabilization by an activity-dependent mechanism, Cell. Molec. Neurobiol., 5: 65–84.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J. T., Edwards, D. L., and Stuermer, C. A. O., 1983, The reestablishment of synaptic transmission by regenerating optic axons in goldfish: Time course and effects of blocking activity by intraocular injection of tetrodotoxin, Brain Res., 269: 15–27.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J. T., and Shashoua, V. E., 1988, Antibodies to ependymin block the sharpening of the regenerating retinotectal projection in goldfish, Brain Res., 446: 269–284.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R., 1986, Biochemical participation of glycoproteins in memory consolidation after two different training paradigms in goldfish; in: “Learning and Memory: Mechanisms of Information Storage in the Nervous System, Advances in Bioscience,” Vol. 59, H. Mattheis, ed., Pergamon Press, Oxford, pp. 213–222.

    Google Scholar 

  • Schmidt, R., Loffler, F., Muller, H. W., and Seifert, W., 1986, Immunological cross-reactivity of cultured rat hippocampal neurons with goldfish brain protein synthesized during memory consolidation. Brain Res., 386, 245–257.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R., and Shashoua, V. E., 1981, A radioimmunoassay for ependymins ß and y: Two goldfish brain proteins involved in behavioral plasticity, J. Neurochem., 36: 1368–1377.

    Article  PubMed  CAS  Google Scholar 

  • Shashoua, V. E., 1970, RNA metabolism in goldfish brain during acquisition of new behavioral patterns, Proc. Natl. Acad. Sci. USA, 65: 160–167.

    Article  PubMed  CAS  Google Scholar 

  • Shashoua, V. E., 1976, Brain metabolism and the acquisition of new behaviors. I. Evidence for specific changes in the pattern of protein synthesis, Brain Res., 111: 347–344.

    Article  PubMed  CAS  Google Scholar 

  • Shashoua, V. E., 1977a, Brain protein metabolism and the acquisition of new behaviors. II. Immunological studies of the a, ß and y proteins of goldfish brain, Brain Res., 122: 113–124.

    Article  PubMed  CAS  Google Scholar 

  • Shashoua, V. E., 1977b, Brain protein metabolism and the acquisition of new patterns of behavior, Proc. Natl. Acad. Sci. USA, 74: 1743–1747.

    Article  PubMed  CAS  Google Scholar 

  • Shashoua, V. E., 1979, Brain metabolism and the acquisition of new behaviors. III. Evidence for secretion of two proteins into the brain extracellular fluid after training, Brain Res., 166: 349–358.

    Article  PubMed  CAS  Google Scholar 

  • Shashoua, V. E., 1981, Extracellular fluid proteins of goldfish brain: Studies of concentration and labeling patterns, Neurochem. Res., 6: 1129–1147.

    Article  PubMed  CAS  Google Scholar 

  • Shashoua, V. E., 1982, Molecular and cell biological aspects of learning: Towards a theory of memory, in: “Advances in Cellular Neurobiology,” Vol. 3, 97–141.

    Google Scholar 

  • Shashoua, V. E., 1985, The role of brain extracellular proteins in neuroplasticity and learning, Cell. Molec. Neurobiol., 5: 183–207.

    Article  PubMed  CAS  Google Scholar 

  • Shashoua, V. E., 1988, Monomeric and polymeric forms of ependymin: A brain extracellular glycoprotein implicated in memory consolidation processes, Neurochem. Res., 13: 649–655.

    Article  PubMed  CAS  Google Scholar 

  • Shashoua, V. E., Daniel, P. F., Moore, M. E., and Jungalwala, F. B., 1986, Demonstration of glucuronic acid on brain glycoproteins which react with HNK-1 antibody, Biochem. Biophys. Res. Comm., 138, 902–909.

    Article  PubMed  CAS  Google Scholar 

  • Shashoua, V. E., Epstein, H., and Moore, M. E., 1989a, Enhanced synthesis of ependymin during rapid developmental periods. Submitted.

    Google Scholar 

  • Shashoua, V. E., and Hesse, G. W., 1985, Role of brain extracellular proteins in the mechanism of long term potentiation in rat brain hippocampus, Neurosci. Abstr., 11: 782. 7.

    Google Scholar 

  • Shashoua, V. E, and Hesse, G. W., 1989a, Classical conditioning leads to changes in extracellular concentrations of ependymin in goldfish brain, Brain Res., 484: 333–339.

    Article  PubMed  CAS  Google Scholar 

  • Shashoua, V. E., and Hesse G. W., 1989b, Determination of amino acid sequence of ependymin by analysis of proteolytic digests. Submitted.

    Google Scholar 

  • Shashoua, V. E., Hesse, G. W., and Milinazzo, B., 1989c, Ependymin and neural function: Evidence for its polymerization in vivo. Submitted.

    Google Scholar 

  • Shashoua, V. E., Hesse, G. W., and Paskevich, P., 1989b, Localization of ependymin in potentiated rat brain hippocampal slices. Submitted.

    Google Scholar 

  • Shashoua, V. E., and Moore, M. E., 1978, Effect of antisera to ß and goldfish brain proteins on the retention of a newly acquired behavior, Brain Res., 148: 441–449.

    Article  PubMed  CAS  Google Scholar 

  • Shashoua, V. E., and Moore, M. E., 1980, Enhanced labeling of ECF proteins in mouse brain after training, Neurosci. Abstr., 6: 290. 4

    Google Scholar 

  • Somjen, G. G., 1984, Acidification of interstitial fluid in hippocampal formation caused by seizures and by spreading depression, Brain Res., 311: 186–188.

    Article  PubMed  CAS  Google Scholar 

  • Teyler, T. J., 1980, Brain slice preparation: Hippocampus, Brain Res. Bull., 5: 391–403.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, M., LeVine, H., III, Stratford, M., Cuatrecases, P., and Sahyoun, N., 1985, A model for intracellular translocation of protein kinase Cinvolving synergism between Ca++ and phorbol esters, Nature, 317: 546–549.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shashoua, V.E. (1990). The Role of Ependymin in Neuronal Plasticity and LTP. In: Ben-Ari, Y. (eds) Excitatory Amino Acids and Neuronal Plasticity. Advances in Experimental Medicine and Biology, vol 268. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5769-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5769-8_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5771-1

  • Online ISBN: 978-1-4684-5769-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics