Advertisement

Modulation of the Responsiveness of Cerebellar Purkinje Cells to Excitatory Amino Acids

  • Francis Crépel
  • Mireille Krupa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)

Abstract

Since the discovery and classification of receptor-types to excitatory amino acids (EAAs), (36) numerous studies have analyzed their role in synaptic plasticity, showing that, in particular in the hippocampus, n-methyl-D-aspartate (NMDA) receptors play a crucial role in long term potentiation of synaptic transmission (ref. dans 5).

Keywords

Purkinje Cell Synaptic Transmission Phorbol Ester Excitatory Amino Acid Climbing Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albus, J.S. (1971): A theory of cerebellar function. Math. Biosci. 10: 25–61CrossRefGoogle Scholar
  2. 2.
    Alkon, D.L. and Rasmussen, H. (1988): A spatial-temporal model of cell activation. Science 239, 988–1005.CrossRefGoogle Scholar
  3. 3.
    Altman, J. (1972): Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J.Comp.Neurol. 145: 399–464PubMedCrossRefGoogle Scholar
  4. 4.
    Ascher, P. and Nowak, L. (1986): Calcium permeability of the channels activated by N-Methyl-D-aspartate (NMDA) in isolated mouse central neurones. J.Physiol. ( London ) 377: 43PGoogle Scholar
  5. 5.
    Bliss, T.V.P. and Lynch, M.A. (1988): Long term potentiation of synaptic transmission in hippocampus: Properties and mechanisms. In long term potentiation from biophysics to behavior 3–72 Alan R. Liss. Inc.Google Scholar
  6. 6.
    Brindley, G.S. (1964): The use made by the cerebellum of the information that it receives from sense organs. I.B.R.O. Bull. 3–80Google Scholar
  7. 7.
    Castagna, M.,Takai, Y.,Kaibuchi, K.,Sano, K.,Kikkawa, U. and Nishizuka,Y. (1982): Direct activation of calcium-activated,phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J.Biol Chem. 257: 7847–7851Google Scholar
  8. 8.
    Crepel, F.,Dhanjal, SS. and Sears, T.A. (1982): Effect of glutamate, aspartate and related derivatives on cerebellar Purkinje cell dendrites in the rat: An in vitro study. J. Physiol. ( London ) 329: 297–317Google Scholar
  9. 9.
    Crepel, F., Dupont, J.L. and Gardette, R. (1982): Connectivity and chemosensitivity of Purkinje cells in the immature cerebellum: an in vitro study. J. Physiol.(London) 332: 62 PGoogle Scholar
  10. 10.
    Crepel, F.,Dupont, J.L. and Gardette, R. (1983): Voltage-clamp analysis of the effect of excitatory amino acids and derivatives on Purkinje cell dendrites in rat cerebellar slices maintained in vitro. Brain Research 279: 311–315CrossRefGoogle Scholar
  11. 11.
    Crepel, F. and Krupa, M. (1988): Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Res. 458: 397–401PubMedCrossRefGoogle Scholar
  12. 12.
    Downing, J.E.G. and Role, L. (1987): Activators of protein kinase C enhance acetylcholine receptor desensitization in synpathic ganglion neurons. Proc. Natl. Acad. Sci. USA. 84: 7739–7743PubMedCrossRefGoogle Scholar
  13. 13.
    Dupont, J.L.,Gardette, R and Crepel, F. (1987): Postnatal development of the chemosensitivity of rat cerebellar Purkinje cells to excitatory amino acids. An in vitro study. Developmental Brain Research 34: 59–68CrossRefGoogle Scholar
  14. 14.
    Eccles, J.C., Ito, M. and Szentagothai, J. (1967): The cerebellum as a neuronal machine. Springer-Verlag. New-York. Heidelberg.Google Scholar
  15. 15.
    Eccles, J.C.,Llinas, R. and Sasaki, K. (1966): The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol. ( London ) 182: 268–296Google Scholar
  16. 16.
    Exton, J.H. (1985): Mechanisms involved in alpha-adrenergic phenomena. Am. J. Physiol. 248: E633 - E647PubMedGoogle Scholar
  17. 17.
    Gonzales, R.A.,Greger, Jr, P.H.,Baker, S.P.,Ganz, N.I.,Bolden, C.,Raizada, M.K. and Crews, F.T. (1987): Phorbol esters inhibit agonist-stimulated phosphoinositide hydrolysis in neuronal primary cultures. Develop.Brain Research 37: 59–66CrossRefGoogle Scholar
  18. 18.
    Ito, M. (1987): Characterization of synaptic plasticity in the cerebellar and cerebral neocortex. In Changeux, J.P. and Nonishi, M. Eds. The Neural and Molecular bases of Learning, John Wiley and Sons, LTD, 276–279Google Scholar
  19. 19.
    Ito, M. (1989): Long term depression. Ann. Rev. Neurosci. 12: 85–102PubMedCrossRefGoogle Scholar
  20. 20.
    Ito, M., Sakurai, M. and Tongreach, P. (1982): Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J. Physiol. ( London ) 324: 113–134Google Scholar
  21. 21.
    Kano, M. and Kato, M. (1987): Quiqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 325: 276–279PubMedCrossRefGoogle Scholar
  22. 22.
    Kano, M. and Kato, M. (1989): Mode of induction of long term depression at parallel fibre-Purkinje cell synapses in rabbit cerebellar cortex. Neurosci. Res. 5: 544–556CrossRefGoogle Scholar
  23. 23.
    Llinas, R. and Sugimori, M. (1980): Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. ( London ) 305: 171–195Google Scholar
  24. 24.
    Lllnas, R. and Sugimori, M. (1980): Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. ( London ) 305: 197–213Google Scholar
  25. 25.
    Lohmann, S.M., Walker, U., Miller, P. E., Greengard, P., Camilli, P. D. (1981): Inununohistochemical localization of cyclic GMP-dependent protein kinase in mammalian brain. Proc. Natl. Acad. Sci. USA. 78: 653–657PubMedCrossRefGoogle Scholar
  26. 26.
    MacDermott, A.B., Mayer, M.L., Westbrook, G.L., Smith, S.J. and Barker, J.L. (1986): NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321: 519–522PubMedCrossRefGoogle Scholar
  27. 27.
    Marr, D. (1969): A theory of cerebellar cortex. J. Physiol. (Lond.) 202: 437–470Google Scholar
  28. 28.
    MC Bride, W.J., Nadi, N.S., Altman, J. and Apprison, M.H. (1976): Effects of selective doses of X-irradiation on the levels of several amino acids in the cerebellum of the rat. Neurochem. Res. 1: 141–152CrossRefGoogle Scholar
  29. 29.
    Nicoletti, F., Iadarola, M.J., Wroblews, J.T., and Costa, E.: (1986) Excitatory amino-acid recognition sites coupled with inositol phospholipid-metabolism. Developmental changes and interaction with alpha-1 adrenoceptors. Proc. Nat. Acad. Sci. USA. 83: 1931–1935PubMedCrossRefGoogle Scholar
  30. 30.
    Nishizuka, Y. (1986): Studies and perspectives in protein kinase C. Science 233: 305–312PubMedCrossRefGoogle Scholar
  31. 31.
    Recasens, M., Sassetti, I., Nourigat, A., Sladecze, F., and Bockaert, J. (1987): Characterization of subtypes of excitatory amino-acid receptors involved in the stimulation of inositol phosphate synthesis in rat-brain synaptoneurosomes. Eur. J. Pharmacol. 141: 87–93PubMedCrossRefGoogle Scholar
  32. 32.
    Ross, W. and Werman, R. (1987): Mapping calcium transiants in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro. J. Physiol. ( London ) 389: 319–336Google Scholar
  33. 33.
    Sakurai, M. (1987): Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. J. Physiol. ( London ) 394: 463–480Google Scholar
  34. 34.
    Sakurai, M. (1988): Depresion and potentiation of parallel fiber-Purkinje cell transmission in in vitro cerebellar slices. In Olivo cerebellar system in motor control, Ed. P. Strata, Berlin Springer-Verlag, in PressGoogle Scholar
  35. 35.
    Sladeczek, F., Pin, J.P., Recasens, M., Bockaert, J. and Weiss, S.: (1985) Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 314: 717–719CrossRefGoogle Scholar
  36. 36.
    Watkins, J.C. (1981): Pharmacology of excitatory amino acid transmitters. In F.V. De Feudis and P. Mandel, Eds. Advances in Biochemical Psychopharmacology, Vol. 29, Amino acid neurotransmitters, Raven, New-York, 205–212Google Scholar
  37. 37.
    Wiklúnd, G., Toggenburger, G., Cuenod, M. (1982): Aspartate: possible neurotransmitter in cerebellar climbing fibers. Science, 216: 78–79PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Francis Crépel
    • 1
  • Mireille Krupa
    • 1
  1. 1.Laboratoire de Neurobiologie du Développement. URA CNRS 1121Université Paris-SudOrsay CedexFrance

Personalised recommendations