Identifying and Localizing Protein Kinases Necessary for LTP

  • Roberto Malinow
  • Richard W. Tsien
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)


Long-term potentiation (LTP) of synaptic transmission follows a brief high-frequency stimulus delivered to afferent pathways (1). This activity-dependent enhancement of transmission, which can be studied at the behavioral, cellular and molecular level, is thought to play a role in learning and memory (2–4). Our recent work has centered on identifying and localizing intracellular signals responsible for the induction, maintenance and expression of LTP (5,6).


NMDA Receptor Postsynaptic Cell CaMKII Activity Postsynaptic Target Cyclic Nucleotide Dependent Protein Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. V. P. Bliss and T. Lomo, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (London) 232, 331 (1973).Google Scholar
  2. 2.
    T. V. P. Bliss and M. Lynch, in Long-Term Potentiation: Mechanisms and Key Issues. P.W. Landfield and S.A. Deadwyler, Eds ( Liss, New York, 1988 )Google Scholar
  3. 3.
    R. A. Nicoll, J. Kauer, R. C. Malenka, Current Excitement in Long-term Potentiation Neuron 1, 97 (1988)Google Scholar
  4. 4.
    T. H. Brown, P. F. Chapman, E. W. Kairiss, C. L. Keenan, Long-Term Synaptic Potentiation Science 242, 724 (1988).Google Scholar
  5. 5.
    R. Malinow, D. V. Madison, R. W. Tsien, Persistent Protein Kinase Activity Underlying Long-Term Potentiation Nature 335, 820 (1988).Google Scholar
  6. 6.
    R. Malinow, H. Schulman, R. W. Tsien, Inhibition of Postsynaptic PKC or CaMKII Blocks Induction but not Expression of LTP Science (in press)Google Scholar
  7. 7.
    G. L. Collingridge, S. J. Kehl, H. McLennan, Excitatory Amino Acids in Synaptic Transmission in the Schaffer Collateral-Commissural Pathway of the Rat Hippocampus. J. Physiol. (London) 334, 33 (1983).Google Scholar
  8. 8.
    E. W. Harris, A. H. Ganong, and C. W. Cotman Long-Term Potentiation in the Hippocampus Involves Activation of N-methyl-D-aspartate Receptors Brain Res. 323, 132 (1984).Google Scholar
  9. 9.
    A. B. Jefferson and H. Schulman, Sphingosine Inhibits Calmodulin-dependent Enzymes J. Biol. Chem. 263, 15241 (1988).Google Scholar
  10. 10.
    Y. A. Hannun and R. M. Bell, Functions of Sphingolipids and Sphingolipid Breakdown Products in Cellular Regulation Science 243, 500 (1989).Google Scholar
  11. 11.
    H. Hidaka, M. Inagaki, S. Kawamoto, Y. Sasaki, Isoquinolinesulfonamides, Novel and Potent Inhibitors of Cyclic Nucleotide dependent Protein Kinase and Protein Kinase C Biochemistry 23, 5036 (1984).Google Scholar
  12. 12.
    J. A. Kauer, R. C. Malenka, R. A. Nicoll, A Persistent Postsynaptic Modification Mediates Long-Term Potentiation in the Hippocampus Neuron 1, 911 (1988)Google Scholar
  13. 13.
    D. Muller, M. Joly, G. Lynch, Contributions of Quisqualate and NMDA Receptors to the Induction and Expression of LTP Science 242, 1694 (1988).Google Scholar
  14. 14.
    T. Honore, S. N. Davies, E. J. Fletcher, P. Jacobsen, D. Lodge, and F. E. Nielsen, Quinoxalinediones: Potent Competitive Non-NMDA Glutamate Receptor Antagonists, Science 241, 701 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Roberto Malinow
    • 1
  • Richard W. Tsien
    • 1
  1. 1.Department of Molecular and Cellular Physiology, Beckman CenterStanford University School of MedicineStanfordUSA

Personalised recommendations