Skip to main content

Trophic Effects of Excitatory Amino Acids in the Developing Nervous System

  • Chapter
Excitatory Amino Acids and Neuronal Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 268))

Abstract

Cerebellar granule cells in culture exhibit specific survival requirements (e.g. Thangnipon et al., 1983; Kingsbury et al., 1985; Gallo et al., 1987a). These include chronic depolarization, usually effected by increasing the K+ concentration of the medium above the physiological level (≥20 mM). The dependence on ‘high’ K+ develops within a narrow window of time between 2 and 4 days in vitro (DIV) (Gallo et al., 1987a). It was also observed that the effect of depolarization on cell survival is mediated through stimulated Ca2+ influx via voltage sensitive Ca2+ channels (VSCC). On the basis of these findings we have put forward the hypothesis that the effect of high K+ in vitro mimics the influence of the first innervation the immediately postmigratory granule cells receive from the mossy fibres (Balázs and Jø/rgensen, 1987; Gallo et al., 1987a). Many of these fibres are glutamatergic (Somogyi et al., 1986) and granule cells are endowed with glutamate (Glu) receptors including the N-methyl- D-aspartate (NMDA)-preferring subtype (Cull-Candy et al., 1988), which is known to be linked to an ion channel whose Ca2+ permeability, in comparison with the other Glu receptor subtypes, is high (Mayer and Westbrook, 1987). The hypothesis predicted therefore that the trophic influence of the mossy fibre innervation is mediated through Ca2+ influx via the NMDA receptor-ionophore complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balázs, R., and Jorgensen, O. S., 1987, Trophic function of excitatory transmitter amino acids, Neurosci., 22: S41.

    Google Scholar 

  • Balázs, R., Patel, A. J., and Lewis, P. D., 1977, Metabolic influences on cell proliferation in the brain, in: “Biochemical Correlates of Brain Structure and Function”, A. N. Davidson, ed., Academic Press, New York.

    Google Scholar 

  • Balázs, R., Hack, N., and Jorgensen, O. S., 1988a, Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating granule cells, Neurosci. Lett., 87: 80–86.

    Article  PubMed  Google Scholar 

  • Balázs, R., Jorgensen, O. S., and Hack, N., 1988b, N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture, Neurosci., 27: 437–451.

    Article  Google Scholar 

  • Balázs, R., Hack, N., Jorgensen, O. S., and Cotman, C. W., 1989a, N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization, Neurosci. Lett., 101: 241–246.

    Article  PubMed  Google Scholar 

  • Balázs, R., Hack, N., and Jorgensen, O. S., 1989b, Selective stimulation of excitatory amino acid receptor subtypes and the survival of cerebellar granule cells in culture, Neurosci., submitted.

    Google Scholar 

  • Balázs, R., Hack, N., and Jorgensen, O. S., 1989c, Interactions in the effects of stimulation of excitatory amino acid receptors and survival of cerebellar granule cells in culture, Int. J. Dev. Neurosci., submitted.

    Google Scholar 

  • Bock, E., Divac, I., Norrild, B., Thorn, N. A., Thorp-Pedersen, C., and Treiman, M., 1982, Synaptic membrane proteins in mammalian brain, Scand. J. Immun., 15: 223–240.

    Article  Google Scholar 

  • Bowman, C. L., and Kimelberg, H. K., 1984, Excitatory amino acids directly depolarize rat brain astrocytes in primary culture, Nature, 311: 656–659.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman, D. E., Yu, C., and Nelson, P. G., 1989, Multi-determinate regulation of neuronal survival: neuropeptides, excitatory amino acids and bioelectric activity, Int. J. Dev. Neurosci., submitted.

    Google Scholar 

  • Busnikov, G. A., 1984, The action of neurotransmitters and related substances on early embryogenesis, Pharmac. Ther., 25: 23–59.

    Article  Google Scholar 

  • Cowan, W. M., Fawcett, J. W., O’Leary, D. D. M., and Stanfield, B. B., 1984, Regressive events in neurogenesis, Science, 225: 1258–1265.

    Article  PubMed  CAS  Google Scholar 

  • Cull-Candy, S. G., Howe, J. R., and Ogden, D. C., 1988, Noise of single channels activated by excita- tory amino acids in rat cerebellar granule neurones, J. Physiol., 400: 189–222.

    PubMed  CAS  Google Scholar 

  • Foster, A. C., and Fagg, G. E., 1984, Acidic amino acid binding sites in neuronal membranes: their characterization and relationship to synaptic receptors, Brain Res. Rev., 7: 103–164.

    Article  CAS  Google Scholar 

  • Gallo, V., Kingsbury, A., Balâzs, R., and Jorgensen, O. S., 1987a, The role of depolarization in the survival and differentiation of cerebellar granule cells in culture, J. Neurosci., 7: 2203–2213.

    PubMed  CAS  Google Scholar 

  • Gallo, V., Suergiu, R., Giovannini, C., and Levi, G., 1987b, Glutamate receptor subtypes in cultured cerebellar neurons: modulation of glutamate and gamma-aminobutyric acid release, J. Neurochem., 49: 1801–1809.

    Article  PubMed  CAS  Google Scholar 

  • Gallo, V., Giovanni, C., and Levi, G., 1989, Quisqualic acid modulates kainate responses in cultured cerebellar granule cells, J. Neurochem., 52: 10–16.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite, G., and Garthwaite, J., 1986, In vitro neurotoxicity of excitatory amino acids analogues during cerebellar development, Neurosci., 17: 755–767.

    Article  CAS  Google Scholar 

  • Garthwaite, G., and Garthwaite, J., 1987, Quinolinate mimics neurotoxic actions of N-methyl-Dasparate in rat cerebellar slices, Neurosci. Lett., 79: 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite, J., 1990, Mechanisms of excitatory amino acid neurotoxicity in rat brain slices, in: Excitatory Amino Acids and Neuronal Plasticity, Y. Ben Ari, ed., Plenum Press, New York.

    Google Scholar 

  • Hamburger, V., and Oppenheimer, R. W., 1982, Naturally occurring neuronal death in vertebrates, Neurosci. Commun., 1: 39–55.

    Google Scholar 

  • Holopainen, I.,Enkvist, M. O. K., and Akerman, K. E. O., 1989, Glutamate receptor agonists increase intracellular Ca2+ independently of voltage-gated Ca2+ channels in rat cerebellar granule cells, Neurosci. Lett., 98: 57–62.

    Article  Google Scholar 

  • Honoré, T., Davies, S. N., Drejer, J., Fletcher, E. J., Jacobsen, P., Lodge, D., and Nielsen, F. E. (1988) Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists, Science, 241: 701–703.

    Article  PubMed  Google Scholar 

  • Jorgensen, O. S., 1983, D2-protein and D3-protein as markers for synaptic turnover and concentration, J. Neur. Trans. Suppl., 18: 245–255.

    CAS  Google Scholar 

  • Kettemann, H., and Schachner, M., 1985, Pharmacological properties of A- aminobutryic acid-, glutamate-, and asparate-induced depolarization in cultured astrocytes, J. Neurosci., 5: 3295–3301.

    Google Scholar 

  • Kingsbury, A., and Balâzs, R., 1987, Effect of calcium agonists and antagonists on cerebellar granule cells, Eur. J. Pharmacol., 140: 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Kingsbury, A., Gallo, V., Woodhams, P., and Balks, R., 1985, Survival, morphology and adhesion properties of cerebellar interneurones cultured in chemically defined and serum supplemented medium, Dev. Brain Res., 17: 17–25.

    Article  Google Scholar 

  • Lauder, J. M., 1988, Neurotransmitters as morphogens, Progr. Brain Res., 73: 365–387.

    Article  CAS  Google Scholar 

  • Lehman, A., and Hansson, E., 1988, Kainate-induced stimulation of amino acid release from primary astroglial cultures of the rat hippocampus, Neurochem.Int., 13: 557–561.

    Article  Google Scholar 

  • Levi-Montalcini, R., 1982, Developmental neurobiology and the natural history of Nerve Growth Factor, A. Rev. Neurosci., 5: 341–361.

    Article  CAS  Google Scholar 

  • McCaslin, P. P., and Morgan, W. W., 1987, Cultured cerebellar cells as an in vitro model of excitatory amino acid receptor function, Brain Res., 417,:380–384.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., 1990, Interactions of excitatory amino acids and growth factors in the development and degeneration of hippocampal neuroarchitecture, in: “Excitatory Amino Acids and Neuronal Plasticity”, Y. Ben Ari., ed., Plenum Press, New York.

    Google Scholar 

  • Mattson, M. P., Dou, P., and Kater, S. B., 1988, Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons, J. Neurosci., 8: 2087–2100.

    PubMed  CAS  Google Scholar 

  • Mayer, M. L., and Westbrook, G. L., 1987, The physiology of excitatory amino acids in the vertebrate central nervous system, Prog. Neurobiol., 28: 197–276.

    Article  PubMed  CAS  Google Scholar 

  • Moran, J., and Patel, A. J., 1989, Stimulation of the N-methyl-D-aspartate receptor promotes the biochemical differentiation of cerebellar granule neurons and not astrocytes, Brain Res., in press.

    Google Scholar 

  • Murphy, S. N., and Miller, R. J., 1989, Regulation of Ca++ influx into striatal neurons by kainic acid, J. Pharmacol.Exp. Ther., 249: 184–193.

    PubMed  CAS  Google Scholar 

  • Nicoletti, P., Wroblewski, J. T., Novelli, A., Alho, H., Guidotti, A., and Costa, E., 1986, The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells, J. Neurosci., 6: 1905–1911.

    PubMed  CAS  Google Scholar 

  • Nowycky, M. C., Fox, A. P., and Tsien, R. W., 1985, Three types of neuronal calcium channel with different calcium agonist sensitivity, Nature, 316: 440–443.

    Article  PubMed  CAS  Google Scholar 

  • Nybroe, O., Albrechtsen, M., Dahlin, J., Linnemann, D., Lyles, J. M., Moller, C. S., and Bock, E., 1985, Biosynthesis of the neuronal cell adhesion molecule: Characterization of polypeptide C, J. Cell Biol., 10: 1–6.

    Google Scholar 

  • Olverman, H. J., Jones, A. W., and Watkins, J. C., 1984, L-glutamate has higher affinity than other amino acids for [3H]-D-AP5 binding sites in rat brain membranes. Nature, 307: 460–462.

    Article  PubMed  CAS  Google Scholar 

  • Patel, A. J., Hunt, A., and Sanfeliu, C., 1989, Cell-type specific effects of N-methyl-D-aspartate on biochemical differentiation of subcortical neurons in culture, Int. J. Dev. Neurosci., submitted.

    Google Scholar 

  • Pearce, I. A., Cambray-Deakin, M. A., and Burgoyne, R. D., 1987, Glu-tamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells, FEBS Lett., 223: 143147.

    Google Scholar 

  • Ruijter, J. M., and Baker, R. E., 1989, The effects of potassium-induced depolarization, glutamate receptor antagonists and N-methyl-D- aspartate on neuronal survival in cultured neocortex explants. Int. J. Dev. Neurosci., submitted.

    Google Scholar 

  • Simon, J. R., Contrera, J. F., and Kuhar, M. J., 1976, Binding of [3H] kainic acid, an analogue of L-glutamate, to brain membranes, J. Neurochem., 26: 141–146.

    PubMed  CAS  Google Scholar 

  • Somogyi, P., Halasy, K., Somogyi, J., Storm-Mathisen, S., and Ottersen, O. P., 1986, Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum, Neurosci., 19: 1045–1050.

    Article  CAS  Google Scholar 

  • Stone, T. W., and Burton, N. R., 1988, NMDA receptors and ligands in the vertebrate CNS, Prog. Neurobiol., 30: 333–368.

    Article  PubMed  CAS  Google Scholar 

  • Thangnipon, W., Kingsbury, A., Webb, M., and Balks, R., 1983, Observations on rat cerebellar cells in vitro: Influence of substatum, potassium concentration and relationship between neurones and astrocytes, Dev. Brain Res., 11: 177–189.

    Article  CAS  Google Scholar 

  • Usowicz, M. M., Gallo, V., and Cull-Candy, S. G., 1989, Multiple conduc-tance channels in type-2 astrocytes by excitatory amino acids, Nature, 339: 380–383.

    Article  PubMed  CAS  Google Scholar 

  • Wong, E. H. F., Knight, A. R., and Woodruff, G. N., 1988, [3H]MK-801 labels a site on the Nmethyl-D-aspartate receptor channel complex in rat brain membranes, J. Neurochem., 50: 274–281.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balázs, R., Hack, N. (1990). Trophic Effects of Excitatory Amino Acids in the Developing Nervous System. In: Ben-Ari, Y. (eds) Excitatory Amino Acids and Neuronal Plasticity. Advances in Experimental Medicine and Biology, vol 268. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5769-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5769-8_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5771-1

  • Online ISBN: 978-1-4684-5769-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics