Advertisement

The Role of the NMDA Receptor in the Development of the Frog Visual System

  • Hollis T. Cline
  • Elizabeth A. Debski
  • Martha Constantine-Paton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)

Abstract

Recent work has demonstrated an involvement of the NMDA receptor, a type of glutamate-sensitive receptor, in organizing the developing visual systems of frogs, fish and kittens (Cline et al, 1987; Kleinschmidt et al, 1987; Fox and Fraser, 1987; Tsumoto et al, 1987; Scherer and Udin, 1988; Schmidt, 1988; Cline and Constantine-Paton, 1989; Fox et al, 1989). It is thought that the NMDA receptor activation may be an initial cellular event in the experience-dependent phases of visual development, which include the formation of both topographic maps and ocular dominance columns. In this chapter, we will review our electrophysiological and anatomical data which demonstrate that NMDA receptor activation is crucial for the development of the retinotectal projection of the frog Rana pipiens and we will end with a discussion of the influence of the NMDA receptor in neuronal growth.

Keywords

NMDA Receptor Retinal Ganglion Cell Optic Tectum NMDA Receptor Activation NMDA Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnett, D.W. 1978. Statistical dependence between neighboring retinal ganglion cells in goldfish. Exp. Brain Res.. 32: 49–53.Google Scholar
  2. Ascher, P. Novak, L. 1987 Electrophysiological studies of NMDA receptor. TINS 10: 284–288.Google Scholar
  3. Cline, H.T., Debski, E., Constantine-Paton, M. 1987. NMDA receptor antagonist desegregates eye-specific stripes. Proc. Natl. Acad. Sci. 84: 4342–4345.PubMedCrossRefGoogle Scholar
  4. Cline, H.T., Constantine-Paton, M. 1989. NMDA receptor antagonists disrupt the retinotectal topographic map. Neuron (in press).Google Scholar
  5. Collingridge, G.L., Kehl, S.J., & McLennan, H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway in the rat hippocampus. J. Physiol. ( Lond ) 334: 33–43.Google Scholar
  6. Constantine-Paton, M., Cline, H.T. and Debski, E., 1990 Patterned activity, synaptic convergence and the NMDA receptor in developing visual pathways. Ann. Rev. Neuroscience 13: in press.Google Scholar
  7. Constantine-Paton, M. and Ferrari-Eastman, P. 1987. Pre-and Postsynaptic correlates of interocular competition and segregation in the frog. J. Comp. Neurol. 255, 178–195.PubMedCrossRefGoogle Scholar
  8. Constantine-Paton, M and Norden, J.J. (1986) Development of order in the visual system. Cell and Developmental Biology of the Eye. S.R. Hilfer and J.B. Sheffield (eds). Springer-Verlag, New York.Google Scholar
  9. Debski, E.A., Cline, H.T., Constantine-Paton, M. 1987. Kynurenic acid blocks retinal-tectal transmission in Rana pipiens. Proc. Soc. Neurosci. 13: 1691.Google Scholar
  10. Debski, E.A., Constantine-Paton, M. 1988. The effects of glutamate receptor agonists and antagonists on the evoked potential in Rana pipiens. Proc. Soc. Neurosci.. 14: 674.Google Scholar
  11. Debski, E.A., Cline, H.T., Constantine-Paton, M. 1989. Chronic application of NMDA or APV affects the NMDA sensitivity of the evoked tectal response in Rana pipiens. Proc. Soc. Neurosci. 15(in press).Google Scholar
  12. Debski, E.A., Cline, H.T., Constantine-Paton, M. 1990. Activity-dependent tuning and the NMDA receptor. J. NeurobioL 21(1)(in press).Google Scholar
  13. Fox, B.E.S., Fraser,S.E. 1987. Excitatory amino acids in the retino-tectal system of Xenopus laevis.. Proc. Soc. Neurosci. 13: 766.Google Scholar
  14. Fox, K., Sato, H. and Daw, N. (1989) The location and function of NMDA receptors in cat and kitten visual cortex. J. Neurosci. 9: 2443–2454.PubMedGoogle Scholar
  15. Fraser, S.E. 1985 Cell interactions involved in neuronal patterning: An experimental and theoretical approach in: Molecular Bases of Neural Development, G.M. EdelmanGoogle Scholar
  16. W.E. Gall and W.M. Cowan, eds, John Wiley Sons, New York, pp. 481–508.Google Scholar
  17. Hannun, Y.A. and Bell, R.M. (1989) Functions of sphingolipids and sphingolipid breakdown products in cellular recognition. Science 243: 500–507.PubMedCrossRefGoogle Scholar
  18. Hidaka, H., Inagaki, M, Kawamoto, S., Sasaki, Y. (1984) Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependet protein kinase and protein kinase C. Biochem, 23: 5036–5040.CrossRefGoogle Scholar
  19. Hubel, D.H., Wiesel, T.N. 1965. Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28: 1041–1059.PubMedGoogle Scholar
  20. Huettner, J. and Bean, B. 1988 Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK801: Selective binding to open channels. Proc. Natl. Acad. Sci. USA 85: 1307–1311.PubMedCrossRefGoogle Scholar
  21. Kauer, J.A., Malenka, R.C. and Nicoll, R.A. (1988) NMDA application potentiates synaptic transmission in the hippocampus. Nature 334: 250–252.PubMedCrossRefGoogle Scholar
  22. Kleinschmidt, A., Bear, M.F., Singer, W. 1987. Blockade of NMDA receptors disrupts experience-dependent plasticity of kitten striate cortex. Science 238: 355–358.PubMedCrossRefGoogle Scholar
  23. Law, M. I. and Constantine-Paton, M. (1981) Anatomy and physiology of experimentally produced striped tecta. J. Neurosci. 1: 741–759.PubMedGoogle Scholar
  24. Malinow, R., Madison, V.D. and Tsien, R.W. (1988) Persistent protein kinase activity underlying long-term potentiation. Nature 335: 820–824.PubMedCrossRefGoogle Scholar
  25. Mathies, H.J.G., Palfrey, H.C., Hirning, L.D. and Miller, R.J. (1987) Down regulation of protein kinase C in neuronal cells: Effects on neurotransmitter release.J. Neurosci. 7: 1198–1206.Google Scholar
  26. Mastronarde, D.N. 1983 Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J. Neurophysiol. 49: 303–324.PubMedGoogle Scholar
  27. Mayer, M.L. and Westbrook, G.L. 1987 The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28: 197–276.Google Scholar
  28. McDonald, J.W., Cline, H.T., Constantine-Paton, M., Maragos, W.E., Johnston, M.V., Young A.B. 1989. Quantitative autoradiographic localization of NMDA, quisqualate and PCP receptors in the frog tectum. Brain Res. 482: 155–159.PubMedCrossRefGoogle Scholar
  29. Reh, T., Constantine-Paton, M. 1984. Retinal ganglion cells change their projection sites during larval development of Rana pipiens. J. Neurosci. 4: 442–457.Google Scholar
  30. Reh, T.A., Constantine-Paton, M. 1985. Eye-specific segregation requires neural activity in three-eyed Rana pipiens. J. Neurosci. 5: 1132–1143.PubMedGoogle Scholar
  31. Scherer, W.S. and Udin, S.B. (1988) The role of NMDA receptors in the development of binocular maps in Xenopus tectum. Proc. Soc. Neurosci. 14: 272. 16.Google Scholar
  32. Schmidt, J.T. 1985 Formation of retinotopic connections: selective stabilization by an activity-dependent mechanism. Cell. and Molec. Neurobiol. 5: 65–84.CrossRefGoogle Scholar
  33. Schmidt, J.T. (1988) NMDA blockers prevent both retinotopic sharpening and LTP in regenerating optic pathway of goldfish. Proc. Soc. Neurosci. 14: 272. 15.Google Scholar
  34. Tsumoto, T., Hagihara, K., Sato, H., Hata, Y. 1987. NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats. Nature 327: 513–514.PubMedCrossRefGoogle Scholar
  35. Udin, S.B. and Fawcett, J.W. 1988. Formation of topographic maps. Ann. Rev. Neurosci. 11:289–327 Google Scholar
  36. Yen, L-H, Constantine-Paton, M. 1988. EM analysis of single retinal ganglion cell terminals in developing Rana pipiens. Proc. Soc. Neurosci. 14:674.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Hollis T. Cline
    • 1
  • Elizabeth A. Debski
    • 1
  • Martha Constantine-Paton
    • 1
  1. 1.Department of BiologyYale UniversityNew HavenUSA

Personalised recommendations