GABA Mediated Synaptic Events in Neonatal Rat CA3 Pyramidal Neurons in Vitro: Modulation by NMDA and Non-NMDA Receptors

  • J. L. Gaïarsa
  • R. Corradetti
  • Y. Ben-Ari
  • E. Cherubini
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)


It is generally assumed that the synaptic inhibition in adult hippocampus is mediated by GABA, which acts on GABA-A (Ben-Ari and al 1981, Alger and Nicoll 1982, Kehl and Mc Lennan 1985), and GABA-B receptors, coupled to chloride and potassium channels respectively (Alger-and Nicoll 1982, Dutar and Nicoll 1988). When the inhibition is blocked by GABAergic antagonist, interictal discharges, mediated by excitatory amino acids appear (Wong and Traub 1983, Neuman and al 1988 b). Extensive theorical and experimental data indicate that the well known propensity of CA3 neurons to generate synchronized burst is due to the presence of recurrent excitatory collateral’s between pyramidal neurons (Mc Vicar and Dudeck 1980, Wong and Traub 1983, Miles and Wong 1986).


NMDA Receptor Pyramidal Neuron Excitatory Amino Acid Gaba Release Bath Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alger, B.E. and Nicoll, R.A. (1982). Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J. Physiol. (Lond.) 328, 125–141.Google Scholar
  2. Baudry, M., Arst, D., Oliver, M. and Lynch, G. (1981). Development of glutamate binding sites and their regulation by calcium in rat hippocampus. Dev. Brain Res. 1, 37–48.CrossRefGoogle Scholar
  3. Ben-Ari, Y., Cherubini, E., Corradetti, R. and Gaiarsa, J.L. (1989). Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. (Lond.) 416, 303–325.Google Scholar
  4. Ben-Ari, Y., Krnjevic, K., Reiffenstein, R.J. and Reinhardt, W. (1981). Inhibitory conductance changes and action of -aminobutyrate in rat hippocampus. Neurosci. 6, 2445–2463.CrossRefGoogle Scholar
  5. Berry, M.S. and Pentreath, V.W. (1976). Criteria for distinguishing between monosynaptic and polysynaptic transmission. Brain Res. 105, 1–20.PubMedCrossRefGoogle Scholar
  6. Collingridge, G.L. and Bliss, T.V.P. (1987). NMDA receptors-their role in long-term potentiation. TINS 10 (7), 288–293.Google Scholar
  7. Corradetti, R., Gaiarsa, J.L. and Ben-Ari, Y. (1988). D-amino-phosphonovaleric acid-sensitive spontaneous giant EPSPs in immature rat hippocampal neurones. Eur. J. Pharmacol. 154(2), 221–222.PubMedCrossRefGoogle Scholar
  8. Drejer, J. and Honore, T. (1988). New quinoxalinediones show potent antagonism of quisqualate responses in cultured mouse cortical neurons. Neurosci. Lett. 87, 104–108.PubMedCrossRefGoogle Scholar
  9. Dun, N.J. and Mo, N. (1989). Inhibitory postsynaptic potentials in neonatal rat sympathetic preganglionic neurones in vitro. J. Physiol. (Lond.) 410, 267–281.Google Scholar
  10. Dunwiddie, T.V. (1981). Age related differences in the in vitro rat hippocampus: development of inhibition and effects of hypoxia. Dev. Neurosci. 4, 165–189.PubMedCrossRefGoogle Scholar
  11. Dutar, P. and Nicoll, R.A. (1988). A physilogical role for GABA-B receptors in the central nervous system. Nature 332, 156–158.PubMedCrossRefGoogle Scholar
  12. Forsythe, I.D., Westbrook, G.L. and Mayer, M.L. (1988). Modulation of excitatory synaptic transmission by glycine and zinc in cultures of mouse hippocampal neurons. J. Neurosci. 8(10), 3733–3741.PubMedGoogle Scholar
  13. Gaiarsa, J.L., Corradetti, R., Cherubini, E. and Ben-Ari, Y. (1990) The allosteric glycine site of the N-methyl-D-aspartate modulates GABAergic-mediated synaptic events in neonatal rat CA3 hippocampal neurons. Proc. Natl. Acad. Sci. USA in press.Google Scholar
  14. Gallagher, J.P. and Hasuo, H. (1989). Bicuculline-and phaclofen-sensitive components of Nmethyl-D-aspartate-induced hyperpolarizations in rat dorsolateral septal nucleus neurones. J. Physiol. 418, 367–377.PubMedGoogle Scholar
  15. Harris, M.K and Miller, J.R. (1989). CNQX (6-cyano-7-nitroquinoxalone-2,3-elione) antagonizes NMDA-evoked (3H)GABA release from cultured cortical neurons via an inhibitory action at the strychnine-insensitive glycine site. Brain Res. 489, 185–189.PubMedCrossRefGoogle Scholar
  16. Harris, M.K. and Teyler T.J. (1983). Evidence for a late development of inhibition in area CAl of the rat hippocampus. Brain Res. 263, 339–343.CrossRefGoogle Scholar
  17. Johston, J.W. and Ascher, P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529–531.CrossRefGoogle Scholar
  18. Kehl, S.J. and Mc Lennan, H. (1985). A pharmacological characterization of chloride-and potassium-dependent inhibitions in the CA3 region of rat hippocampus in vitro. Exp. Brain Res. 60, 309–317.PubMedGoogle Scholar
  19. Kemp, J.A., Foster, A.C., Leeson,P.D., Priestley, T., Tridgett, R., Iversen, L.L. and Woodruff, G.N. (1988). 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proc. Natl. Acad. Sci. USA 85, 6547–6550.Google Scholar
  20. Mac Vicar, B.A. and Dudeck, F.E. (1980). Local synaptic circuits in rat hippocampus: interactions between pyramidal cells. Brain Res. 184, 220–223.CrossRefGoogle Scholar
  21. Miles, R. and Wong, R.K.S. (1986). Excitatory synaptic interactions between CA3 neurones in the guinea pig hippocampus. J. Physiol. (Lond.) 373, 397–418.Google Scholar
  22. Neuman, R.S., Ben-Ari, Y., Gho, M. and Cherubini, E. (1988a). Blockage of excitatory synaptic transmission by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the hippocampus in vitro. Neurosci. Lett. 92, 64–68.PubMedCrossRefGoogle Scholar
  23. Neuman, R., Cherubini, E. and Ben-Ari, Y. (1988b). Epileptiform burst elicited in CA3 hippocampal neurons by a variety of convulsants are not blocked by N-methyl-D-aspartate antagonists. Brain Res. 459, 267–274.CrossRefGoogle Scholar
  24. Purpura, D.P. and Pappas, G.D. (1968). Structural characteristics of neurones in the feline hippo-campus during postnatal ontogenesis. Exp. Neurol. 22, 379–393.PubMedCrossRefGoogle Scholar
  25. Schwartzkroin, P.A. (1982). Development of rabbit hippocampus: physiology. Dev. Brain Res. 21, 469–486.Google Scholar
  26. Schwartzkroin, P.A. and kunkel, D.D. (1982). Electrophysiology and morphology of the developing hippocampus of fetal rabbits. J. Neurosci. 2 (4), 448–462.PubMedGoogle Scholar
  27. Sawnn, J.W., Brady, R.J. and Martin, D.L. (1989). Postnatal development of GABA-mediated synaptic inhibition in rat hippocampus. Neurosci. 28 (3), 551–561.CrossRefGoogle Scholar
  28. Taube, J.S. and Schwartzkroin, P.A. (1987). Hyperpolarizing responses to application of glutamate in hippocampal CAl pyramidal neurons. Neurosci. Lett. 78, 85–90.PubMedCrossRefGoogle Scholar
  29. Tremblay, E., Roisin, M.P., Represa, A., Charriaut-Marlangue, C., and Ben-Ari, Y. (1988). Transient increased density of NMDA binding sites in the developing rat hippocampus. Brain Res. 461, 393–396.PubMedCrossRefGoogle Scholar
  30. Wong, R.K.S. and Traub, R.D. (1983). Synchronized burst discharges in disinhibited hippocampal slices. I. initiation in the CA2–CA3 region. J. Neurophysiol. 49, 442–458.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. L. Gaïarsa
    • 1
  • R. Corradetti
    • 1
  • Y. Ben-Ari
    • 1
  • E. Cherubini
    • 1
  1. 1.INSERM U029ParisFrance

Personalised recommendations