Topographical Heterogeneity of Glutamate Agonist-Induced Calcium Increase in Hippocampus

  • Yoshihisa Kudo
  • Etsuro Ito
  • Akihiko Ogura
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)


Although the mechanisms underlying the establishment of long term potentiation (LTP) in the hippocampus have not been understood yet, it is widely accepted that the increase in intracellular Ca2+ concentration ([Ca2+]i) due to the activation of L-glutamate receptors plays a crucial role in the early phase of LTP (Kudo et al., 1987; Malenka et al., 1988). It is therefore important to specify the location of L-glutamate receptors responsible for the [Ca2+]i elevation.


Mossy Fiber Population Spike Slice Preparation Tetanic Stimulation Schaffer Collateral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Collingridge, G.L. & Bliss, T.V.P. NMDA receptors–their role in long-term potentiation. Tr. Neurosci., 10, 288–293 (1987).CrossRefGoogle Scholar
  2. Cotman, C.W., Monaghan, D.T., Ottersen, O.P., Storm-Mathisen, J. Anatomical organization of excitatory amino acid receptors and their pathways. Tr. Neurosci., 10, 273–280 (1987).CrossRefGoogle Scholar
  3. Kudo, Y., Ito, K., Miyakawa, H., lzumi, Y., Ogura, A. & Kato, H. Cytoplasmic calcium elevation in hippocampal granule cell induced by perforant path stimulation and L-glutamate application. Brain Res., 407, 168–172 (1987).PubMedCrossRefGoogle Scholar
  4. Kudo, Y. & Ogura, A. Glutamate-induced increase in intracellular Ca2+ concentrationin isolated hippocampal neurones. Br. J. Pharmacol., 89, 191–198 (1986).PubMedCrossRefGoogle Scholar
  5. Malenka, R.C., Kauer, J.A., Zucker, R.S. & Nicoll, R.A. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science (Wash.), 242, 81–84 (1988).Google Scholar
  6. Mayer, M. Two channels reduced to one. Nature (Lond.), 325, 480–481 (1987).CrossRefGoogle Scholar
  7. Murphy, S.N. & Miller, R.J. Regulation of Ca2+ influx into striatal neurons by kainic acid. J. Pharmacol. Exp. Therap., 249, 184–193 (1989).Google Scholar
  8. Nicoll, R.A., Kauer, J.A. & Malenka, R.C. The current excitement in long-term potentiation. Neuron, 1, 97–103 (1988).PubMedCrossRefGoogle Scholar
  9. Ogura, A., Miyamoto, M. & Kudo, Y. Neuronal death in vitro. Exp. Brain Res., 73, 447–458 (1988).PubMedCrossRefGoogle Scholar
  10. Sugiyama, H., Ito, I, & Hirono, C. A new type of glutamate receptor linked to inositol phopholipid metabolism. Nature (Lond.), 325, 531–533 (1987).CrossRefGoogle Scholar
  11. Tank, D.W., Sugimori, M., Connor, J.A. & Llinas., R.R. Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science (Wash.), 242, 773–776 (1988) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Yoshihisa Kudo
    • 1
  • Etsuro Ito
    • 2
  • Akihiko Ogura
    • 1
  1. 1.Department of NeuroscienceMitsubishi Kasei Institute of Life Sciences MinamiooyaMachida, Tokyo 194Japan
  2. 2.Advanced Research Center for Human SciencesWaseda UniversityTokorozawa, Saitama 359Japan

Personalised recommendations