Skip to main content

Mechanisms Underlying Excitatory Amino Acid-Evoked Calcium Entry in Cultured Neurons from the Embryonic Rat Spinal Cord

  • Chapter
Book cover Excitatory Amino Acids and Neuronal Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 268))

  • 143 Accesses

Abstract

Intracellular calcium is a ubiquitous and potent regulator of many cellular enzymes, channels, pumps, and structural elements. To perform such a variety of functions, the concentration of intracellular calcium ions ([Ca2+]i) must be carefully regulated. In vertebrate neurons, resting calcium levels are generally fixed between 5 and 10x10-8 M. However in an intact nervous system, neurons are seldom at rest and [Ca2+]i can vary with both time and spatial distribution within a neuron. Fluctuations of [Ca2+]i over orders of magnitude have been recorded from neurons in slices and in culture, in the absence of any external stimulus (Tank et al, 1988, Connor et al, 1987, Womack et al, 1988). These calcium transients can be driven by intrinsically-generated membrane oscillations or by synaptic activity. The studies described in this chapter address some of the mechanisms by which excitatory amino acid-mediated synaptic transmission might produce transient elevations of [Ca2+]i.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arancio, O. and MacDermott, A. B., 1989, Differential distribution of excitatory amino acid receptors on embryonic rat spinal cord neurons in culture. In preparation.

    Google Scholar 

  • Arancio, O., Murase, K., Yoshimura, M, and MacDermott, A. B., 1989, Heterogeneous distribution of excitatory amino acid receptors on postnatal neurons acutely dissociated from rat dorsal horn, Neuroscience Abstracts, 15: 943.

    Google Scholar 

  • Brown, A. G., 1981, Organization in the Spinal Cord, Springer-Verlag, New York.

    Book  Google Scholar 

  • Collingridge, G. L., Herron, C. E. and Lester, R. A. J., 1988, Synaptic activation of N-methyl-D aspartate receptors in the schaffer collateral-commissural pathway of rat hippocampus, J. Physiol., 399: 283.

    CAS  Google Scholar 

  • Connor, J. A., Tseng, H-Y., and Hockberger, P. E., 1987, Depolarization-and transmitter-induced changes in intracellular Ca2+ of rat cerebellar granule cells in explant cultures,J. Neurosci., 7: 1384.

    PubMed  CAS  Google Scholar 

  • Dale, N. and Roberts, A., 1985, Dual-component amino-acid-mediated synaptic potentials: Excitatory drive for swimming in Xenopus embryos, J. Physiol., 363: 35.

    PubMed  CAS  Google Scholar 

  • Davies, J. and Watkins, J. C., 1979, Selective antagonism of amino acid-induced and synaptic excitation in the cat spinal cord. J. Physiol., 297: 621.

    CAS  Google Scholar 

  • De Biasi, S. and Rustioni, A., 1988, Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord, Proc. Natl. Acad. Sci., 85: 7820.

    Google Scholar 

  • Flatman, J.A., Schwindt, P.C. and Crill, W.E. (1986) The induction and modification of voltage sensitive responses in cat neocortical neurons by N-methyl-D-aspartate. Brain Res. 363: 62.

    Article  PubMed  CAS  Google Scholar 

  • Forsythe, I. A. and Westbrook, G. L., 1988, Slow excitatory postsynaptic currents mediated by N-methyl-D-aspartate receptors on cultured mouse central neuronis, J. Physiol., 396: 515.

    CAS  Google Scholar 

  • Greenamyre, J. T., Young, A. 3., and Penney, J. B., 1984, Quantitative autoradiographic distribution of L-[3H] glutamate binding sites in rat central nervous system. J. Neurosci., 4: 2133.

    Google Scholar 

  • Grillner, S. and Wallen, P., 1985, The ionic mechanisms underlying N-methyl-D-aspartate receptor-induced, tetrodotoxin-resistant membrane potential oscillations in lamprey neurons active during locomotion, Neurosci. Lett., 60: 289.

    CAS  Google Scholar 

  • Grynkiewicz, G., Poenie, M. and Tsien, R. Y., 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440.

    CAS  Google Scholar 

  • Heyer, E. J., MacDonald, R. L., Bergey, G. K., and Nelson, P. G., 1981, Calcium-dependent action potentials in mouse spinal cord neurons in culture, Brain Res., 220: 408.

    CAS  Google Scholar 

  • Huang, L-Y. M., 1989, Calcium channels in isolated rat dorsal horn neurones, including labelled spinothalamic and trigeminal cells, J. Physiol., 411: 161

    CAS  Google Scholar 

  • Huettner, J. E., and Baughman, R. W., 1988, The pharmacology of synapses formed by identified corticocollicular neurons in primary cultures of rat visual cortex, J. Neurosci., 8: 160

    CAS  Google Scholar 

  • Jack, J. J. B., Redman, S. J., and Wong, K., 1981, The components of synaptic potentials evoked in cat spinal notoneurones by impulses in single group Ia afferents, J. Physiol., 321: 65.

    CAS  Google Scholar 

  • Jahr, C. E. and lessen, T. M., 1985, Synaptic transmission between dorsl horn neurons in culture: antagonism of monosynaptic EPSPs and glutamate excitation by kynurenate, J. Neurosci., 5: 2281.

    PubMed  CAS  Google Scholar 

  • Johnson, J. W. and Ascher, P., 1987, Glycine potentiates the NMDA response in cultured mouse brain neurons, Nature, 325: 529.

    Article  PubMed  CAS  Google Scholar 

  • Jones, K. A. and Baughman, R. W., 1988, NMDA- and non-NMDA-receptor components of excitatory synaptic potentials recorded from cells in layer V of rat visual cortex, J. Neurosci., 8: 3522.

    CAS  Google Scholar 

  • Kleckner, N. K. and Dingledine, R., 1989, Glycine is required for activation of NMDA receptors in Xenopus oocytes injected with rat brain mRNA, Science, 241: 835.

    Article  Google Scholar 

  • Kudo, Y. and Ogura, A., 1986, Glutamtate-induced increase in intracellular Cat+ concentration in isolated hippocampal neurones, Br. J. Pharmac., 89: 191.

    CAS  Google Scholar 

  • Llinas, R. R., 1988, The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function, Science, 242: 1654.

    Article  PubMed  CAS  Google Scholar 

  • Llinas, R. and Sugimori, M., 1980, Electrophysiological properites of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol., 305: 197.

    CAS  Google Scholar 

  • MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J., Barker, J. L., 1986, NMDA receptor activation elevates cytoplasmic calcium in cultured spinal cord neurones, Nature, 321: 519.

    Article  PubMed  CAS  Google Scholar 

  • MacDermott, A. B. and Dale, N., 1987, Receptors, ion channels and synaptic potentials underlying the integrative actions of excitatory amino acids, TINS, 10: 280.

    CAS  Google Scholar 

  • MacDonald, J. F. and Wojtowicz, J. M., 1982, The effects of L-glutamate and its analogues upon the membrane conductance of central murine neurones in culture, Can. J. Physiol. Pharmacol., 60: 282.

    CAS  Google Scholar 

  • Mayer, M. L., MacDermott, A. B., Westbrook, G. L., Smith, S. J., and Barker, J. L., 1987, Agonistand voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp measured using arsenazo III, J. Neurosci., 7: 3230.

    CAS  Google Scholar 

  • Mayer, M. L., Westbrook, G. L. and Guthrie, P. B., 1984, Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones, Nature 309: 261.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, M. L. and Westbrook, G. L., 1987, The physiology of excitatory amino acids in the vertebrate central nervous system, Prog. Neurobiol., 28: 276.

    Google Scholar 

  • Monaghan, D. T. and Cotman, C. W., 1985, Distribution of N-mehtyl-D-aspartate-sensitive 1-(3H]Glutamate-binding sites in rat brain, J. Neurosci., 5: 2909.

    Google Scholar 

  • Murase, K. and Randic, M., 1983, Electrophysiological properties of rat spinal dorsal horn neurones in vitro: calcium-dependent action potentials, J. Physiol., 334: 141.

    CAS  Google Scholar 

  • Murphy, S. N. and Miller, R. J., 1989, Regulation of Cat+ influx into striatal neurons by kainic acid, J. Pharmacol. Exp. Ther., 249: 184.

    CAS  Google Scholar 

  • Murphy, S. N., Thayer, S. A., and Miller, R. J., 1987, The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro, J. Neurosci., 7: 4145.

    CAS  Google Scholar 

  • Neale, E. A., Nelson, P. G., MacDonald, R. L., Christian, C. N., and Bowers, L. M., 1983, Synaptic interactions between mammalian central neurons in cell culture. III Morphological correlates of quantal synaptic transmission, J. Neurophysiol., 49: 1459.

    Google Scholar 

  • Nowak, L., Bregestovski, P., Ascher, P., Herbert, A.and Proshiantz, A., 1984, Magnesium gates glutamate-activated channels in mouse central neurones, Nature 307: 462.

    CAS  Google Scholar 

  • O’Brien, R. J. and Fischbach, G. D., 1986, Characterization of excitatory amino acid receptors expressed by embryonic chick motoneurons in vitro, J. Neurosci., 6: 3275.

    Google Scholar 

  • O’Brien, R. J. and Fischbach, G. D., 1986, Modulation of embryonic chich motoneuron glutamate sensitivity by interneurons and agonists. J. Neurosci., 6: 3290.

    Google Scholar 

  • Ransom, B. R., Bullock, P. N., and Nelson, P. G., 1977, Mouse spinal cord in cell culture. III. Neuronal chemosensitivity and its relationship to synaptic activity, J. Neurophysiol., 40: 1163.

    CAS  Google Scholar 

  • Schneider, S. P. and Perl, E. R., 1985, Selective excitation of neurons in the mammalian spinal dorsal horn by aspartate and glutamate in vitro: correlation with location and excitatory input, Brain Res., 360: 339.

    CAS  Google Scholar 

  • Tank, D. W., Sugimori, M., Connor, J. A., and Llinas, R. R., 1988, Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice, Science, 242: 773.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A. M., 1986, A magnesium-sensitive post-synaptic potential in rat cerebral cortex resembles neuronal responses to N-methylaspartate, J. Physiol., 370: 531.

    CAS  Google Scholar 

  • Trussell, L. O., Thio, L. L., Zorumski, C. F., and Fischbach, G. D., 1988, Rapid desensitization of glutamate receptors in vertebrate central neurons, Proc. Natl. Acad. Sci., 85: 4562.

    Article  CAS  Google Scholar 

  • Watkins, J.C. and Evans, R.H. (1981) Excitatory amino acid transmitters. Ann. Rev. Pharmacol.Toxicol. 21 165–204.

    Article  CAS  Google Scholar 

  • Westbrook, G. L. and Mayer, M. L., 1984, Glutamate currents in mammalian spinal neurons: resolution of a paradox, Brain Res., 301: 375.

    CAS  Google Scholar 

  • Womack, M. D., MacDermott, A. B., and Jesse’’, T. M., 1988, Sensory transmitters regulate intracellular calcium in dorsal horn neurons, Nature, 334: 351.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

MacDermott, A.B., Reichling, D.B., Arancio, O. (1990). Mechanisms Underlying Excitatory Amino Acid-Evoked Calcium Entry in Cultured Neurons from the Embryonic Rat Spinal Cord. In: Ben-Ari, Y. (eds) Excitatory Amino Acids and Neuronal Plasticity. Advances in Experimental Medicine and Biology, vol 268. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5769-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5769-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5771-1

  • Online ISBN: 978-1-4684-5769-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics