The Glycine Site on the NMDA Receptor: Pharmacology and Involvement in NMDA Receptor-Mediated Neurodegeneration

  • A. C. Foster
  • A. E. Donald
  • C. L. Willis
  • R. Tridgett
  • J. A. Kemp
  • T. Priestley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)


It is now firmly established that the widespread actions of the excitatory amino acid neurotransmitters glutamate and aspartate in the mammalian central nervous system (CNS) are mediated by distinct receptor sub-types. Amongst these, the N-methyl-D-aspartate (NMDA) receptor has been characterized most fully in terms of its pharmacological and biophysical properties (Watkins and Evans, 1981; Mayer and Westbrook, 1987). The NMDA receptor can be divided into three functional domains (Foster and Fagg, 1987): a transmitter recognition site, an ion channel and an allosteric site activated by glycine. This chapter will review the glycine site on the NMDA receptor, describe its pharmacology, including the identification of selective antagonists, and discuss experiments with these compounds which have attempted to determine the relevance of activation of the glycine site in vivo for neurodegenerative phenomena mediated by NMDA receptor activation.


NMDA Receptor Excitatory Amino Acid Quinolinic Acid Kynurenic Acid Excitatory Amino Acid Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birch, P. J., Grossman, C. J., and Hayes, A. G., 1988, 6,7-Dinitro-quinoxaline-2,3-dione and 6nitro-7-cyano-quinoxaline-2,3-dione antagonise responses to NMDA in the rat spinal cord via an action at the strychnine-insensitive glycine receptor, Eur. J. Pharmacol., 156:177.Google Scholar
  2. Birch, P. J., Grossman, C. J., and Hayes, A. G., 1989, Antagonist profile of 6,7-dichloro-3hydroxy-2-quinoxaline carboxylate at excitatory amino acid receptors in the neonatal rat spinal cord, Eur. J. Pharmacol, 163: 127.PubMedCrossRefGoogle Scholar
  3. Bonhaus, D. W., Burge, B. C., and McNamara, J. 0., 1987, Biochemical evidence that glycine allosterically regulates an NMDA receptor-coupled ion channel, Eur. J. Pharmacol, 142: 489.PubMedCrossRefGoogle Scholar
  4. Bristow, D. R., Bowery, N. G., and Woodruff, G. N., 1986, Light microscopic autoradiographic localization of [3H]glycine and [3H]strychnine binding sites in rat brain, Eur. J. Pharmacol, 126: 303.PubMedCrossRefGoogle Scholar
  5. Davies, J., and Watkins, J. C., 1972, Is 1-hydroxy-3-amino-pyrrolidone-2 (HA-966) a selective excitatory amino acid antagonist ? Nature New Biol, 328: 61.Google Scholar
  6. Donald, A. E., Tridgett, R., and Foster, A. C., 1988, Characterization of [3H]glycine binding to a modulatory site within the N-methyl-D-aspartate receptor complex from rat brain, Br. J. Pharmacol. Proc. Suppl, 95: 892 P.Google Scholar
  7. Drejer, J., Jensen, L. H., Sheardown, M., and Honore, T., 1989, A new potent glycine antagonist FG9067 (MNQX) shows anticonvulsant activity, J. Neurochem 52 (Suppl.): S42.Google Scholar
  8. Fletcher, E. J., and Lodge, D., 1988, Glycine reverses antagonism of N-methyl-D-aspartate (NMDA) by 1-hydroxy- 3-amino-pyrrolidone-2 (HA-966) but not by D-2-amino-5phosphonovalerate (D-AP5) on rat cortical slices, Eux. J. Pharmacol, 151: 161.CrossRefGoogle Scholar
  9. Foster, A. C., and Fagg, G. E., 1987, Neurobiology: taking apart NMDA receptors, Nature, 329: 395.PubMedCrossRefGoogle Scholar
  10. Foster, A. C., Gill, R., and Woodruff, G. N., 1988, Neuroprotective effects of MK-801 in vivo: selectivity and evidence for delayed degeneration mediated by NMDA receptor activation, J. Neurosci, 8: 4745.PubMedGoogle Scholar
  11. Foster, A. C., and Kemp, J. A., 1989a, Neurobiology: glycine maintains excitement, Nature, 338: 377.PubMedCrossRefGoogle Scholar
  12. Foster, A. C., and Kemp, J. A., 1989b, HA-966 antagonizes N- methyl-D-aspartate receptors through a selective interaction with the glycine modulatory site, J. Neurosci, 9: 2191.PubMedGoogle Scholar
  13. Ganong, A. H., Lanthorn, T. H., and Cotman, C. W., 1983, Kynurenic acid inhibits synaptic and acidic amino acid-induced responses in the rat hippocampus and spinal cord, Brain Res, 273: 170.PubMedCrossRefGoogle Scholar
  14. Hood, W. F., Sun, E. T., Compton, R. P., and Monahan, J. B., 1989, 1-Aminocyclobutane-1- carboxylate (ACBC): a specific antagonist of the N-methyl-D-aspartate receptor coupled glycine receptor, Eur. J. Pharmacol., 161:281.Google Scholar
  15. Hood, W. F., Compton, R. P., and Monahan, J. B., 1989, D-cycloserine: a ligand for the Nmethyl-D-aspartate coupled glycine receptor has partial agonist characteristics, Neurosci. Lett, 98: 91.PubMedCrossRefGoogle Scholar
  16. Huettner, J. E., 1989, Indole-2-carboxylic acid: a competitive antagonist of potentiation by glycine at the NMDA receptor, Science, 243: 1611.PubMedCrossRefGoogle Scholar
  17. Johnson, J. W., and Ascher, P., 1987, Glycine potentiates the NMDA response in cultured mouse brain neurones, Nature, 325: 529.PubMedCrossRefGoogle Scholar
  18. Kemp, J. A., Foster, A. C., Leeson, P. D., Priestley, T., Tridgett, R., Iversen, L. L., and Woodruff, G. N., 1988, 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex, Proc. Natl. Acad. Sci (USA), 85:6547.Google Scholar
  19. Kessler, M., Terramini, T., Lynch, G., and Baudry, M., 1989, A glycine site associated with the N-methyl-D-aspartic acid receptor: characterization and identification of a new class of antagonists, J. Neurochem, 52: 1319.PubMedCrossRefGoogle Scholar
  20. Kishimoto, H., Simon, J. R., and Aprison, M. H., 1981, Determination of equilibrium dissociation constants and number of glycine binding sites in several areas of the rat central nervous system, J. Neurochem, 37: 1015.PubMedCrossRefGoogle Scholar
  21. Kleckner, N. W., and Dingledine, R., 1988, Requirement for glycine in activation of NMDA receptors expressed in Xenopus oocytes, Science, 241: 835.PubMedCrossRefGoogle Scholar
  22. Mayer, M. L., and Westbrook, G. L., 1987, The physiology of excitatory amino acids in the vertebrate central nervous system, Prog. Neurobiol, 28: 197.PubMedCrossRefGoogle Scholar
  23. Mayer, M. L., Vyklicky Jr., L., and Clements, J., 1989, Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine, Nature, 338: 425.PubMedCrossRefGoogle Scholar
  24. McKernan, R. M., Castro, S., Poat, J., and Wong, E. H. F., 1989, Solubilization of the N-methylD-aspartate receptor channel complex from rat and porcine brain, J. Neurochem, 52: 777.PubMedCrossRefGoogle Scholar
  25. Monaghan, D. T., Olverman, H. J., Nguyen, L., Watkins, J. C., and Cotman, C. W., 1988, Two classes of N-methyl-D-aspartate recognition sites: differential distribution and differential regulation by glycine, Proc. Natl. Acad. Sci. (USA), 85: 9836.CrossRefGoogle Scholar
  26. Nadler, V., Kloog, Y., and Sokolovsky, M., 1988, 1-Aminocyclopropane-1-carboxylic acid (ACC) mimics the effects of glycine on the NMDA receptor ion channel, Eur. J. Pharmacol., 157:115.Google Scholar
  27. Reynolds, I. J., Murphy, S. N., and Miller, R. J., 1987, [3H]Labelled MK-801 binding to excitatory amino acid receptor complex from rat brain is enhanced by glycine, Proc. Natl. Acad. Sci. (USA), 84:7744.Google Scholar
  28. Schwarcz, R., Whetsell Jr., W. O., and Mangano, R. M., 1983, Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain, Science, 219: 316.PubMedCrossRefGoogle Scholar
  29. Snell, L. D., and Johnson, K. M., 1988, Cycloleucine competitively antagonizes the strychnineinsensitive glycine receptor, Eur. J. Pharmacol, 151: 165.PubMedCrossRefGoogle Scholar
  30. Snell, L. D., Morter, R. S., and Johnson, K. M., 1988, Structural requirements for activation of the glycine receptor that modulates the N-methyl-D-aspartate operated ion channel, Eur. J. Pharmacol, 156: 105.PubMedCrossRefGoogle Scholar
  31. Stone, T. W., and Perkins, M. N., 1981, Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS, Eur. J. Pharmacol, 72: 411.PubMedCrossRefGoogle Scholar
  32. Tridgett, R., and Foster, A. C., 1988, Prevention of NMDA receptor-mediated neurodegeneration in the rat striatum by an antagonist at the glycine modulatory site, Br. J. Pharmacol. Proc. SuppL, 95: 890 P.Google Scholar
  33. Verdoorn, T., Kleckner, N. K., and Dingledine, R., 1987, Rat brain NMDA receptors expressed in Xenopus oocytes, Science, 238: 1114.PubMedCrossRefGoogle Scholar
  34. Watkins, J. C., and Evans, R. H., 1981, Excitatory amino acid transmitters, Ann. Rev. Pharmacol. Toxicol, 21: 165.CrossRefGoogle Scholar
  35. Watson, G. B., Hood, W. F., Monahan, J. B., and Lanthorn, T. H., 1988, Kynurenate antagonizes actions of N-methyl-D-aspartate through a glycine-sensitive receptor, Neurosci. Res. Commun, 2: 169.Google Scholar
  36. Wong, E. H. F., Knight, A. R., and Ransom, R., 1987, Glycine modulates [3H]MK-801 binding to the NMDA receptor in rat brain, Eur. J. Pharmacol, 142: 487.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • A. C. Foster
    • 1
  • A. E. Donald
    • 1
  • C. L. Willis
    • 1
  • R. Tridgett
    • 1
  • J. A. Kemp
    • 1
  • T. Priestley
    • 1
  1. 1.Neuroscience Research CentreMerck, Sharp and Dohme Ltd.Harlow, EssexUK

Personalised recommendations