Biochemical and Ultrastructural Changes in the Hyperthermic Treatment of Tumor Cells: An Outline

  • Lucia Marcocci
  • Bruno Mondovi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 267)


Among the therapeutic strategies that have recently been proposed and are currently in use in the cancer treatment, hyperthermia is one of the most commonly employed.


Heat Shock Heat Shock Protein Heat Shock Response Chinese Hamster Cell Mouse Embryo Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Bush, Uber den Einfluss welchen Heftigere Erysipeln Zuweilen auf Organisierte Neubildungen Ausuben, Verhandl Naturh. Preuss. Rhein. Westphal. 23: 28 (1866).Google Scholar
  2. 2.
    P. Burns, Die Heilwirkung des Erysipels auf Geschwulste, Beitr. Klin. Chir. 3: 443 (1887).Google Scholar
  3. 3.
    W. B. Coley, The treatment of malignant tumors by repeated inoculations of erysipelas-With a report of ten original cases, Am. J. Med. Sci. 105: 487 (1893).CrossRefGoogle Scholar
  4. 4.
    F. Westermark, Uber die Behandlung des Ulcerirended Cervixcarcinoms, Mittel Konstanter Warme, Zbl. Gynak. 1335 (1898).Google Scholar
  5. 5.
    J. F. Percy, Heat in the treatment of carcinomas of the uterus, Surg. Gynec. Obstet. 22: 77 (1916).Google Scholar
  6. 6.
    R. Kirsch and D. Schmidt, Erste Experimentelle und Klinische Erfahrungen mit der Ganzkorper-ExtremHyperthermie, in: Aktuelle Probleme aus dem Gebiet der Cancerologie, W. Doerr, F. Linder, and G.Wagner, eds. Heidelberg,Springer-Verlag pp. 53 (1966).Google Scholar
  7. 7.
    R. Cavaliere, E. C. Ciocatto, B. C. Giovannella, C. Heidelberger, R. O. Johnson, M. Fagottini, B. Mondovi’, G. Moricca and A. Rossi-Fanelli,Selective heat sensitivity of cancer cells. Biochemical and clinical studies, Cancer 20: 1351 (1967).PubMedCrossRefGoogle Scholar
  8. 8.
    B. C. Giovanella, Actions of hyperthermia on tumor cells cultured in vitro, in: Selective heat sensitivity of cancer cells, A. Rossi Fanelli, R. Cavaliere, B. Mondovi’, G. Moricca eds. Springer-Verlag, Berlin, Heidelberg, New York pp. 36 (1977).Google Scholar
  9. 9.
    S.B. Field, Biological aspects of hyperthermia, in Physics and thecnology of hyperthermia, S. B. Field and C. Franconi eds. NATO ASI Series E:Applied Sciences,127, pp.634(1987).Google Scholar
  10. 10.
    R. J. Palzer and C. Heidelberger, Influence of drugs and synchrony on the hyperthermic killing of HeLa cells, Cancer Res. 33: 422 (1973).PubMedGoogle Scholar
  11. 11.
    B. Mondovi’, Temperature range and selective sensitivity to hyperthermia,in:Thermal characteristics of tumors: application in detection and treatment, R. K. Jain and P.M.Gullino, Ann. New York Acad. Sci. NewYork pp. 202 and 231 (1980).Google Scholar
  12. 12.
    K. J. Henle and L. A. Dethlefsen, Heat fractionation and thermotolerance: a rewiew, Cancer Res. 38: 1843 (1978).PubMedGoogle Scholar
  13. 13.
    G. M. Hahn, Hyperthermia and cancer, Plenum Press, New York and London (1982).CrossRefGoogle Scholar
  14. 14.
    S. B. Field and R. L. Anderson, Thermotolerance: a review of observations and possible mechanisms, Natl. Cancer Inst. Monogr. 61: 193 (1982).Google Scholar
  15. 15.
    S. B. Field, Clinical implication of thermotolerance in: Hyperthermic Oncology 1984, Vol 2, J.Overgaard ed., London, pp. 235 (1985).Google Scholar
  16. 16.
    J. Jung, A generalised concept for cell killing by heat, Radiat. Res. 106: 56 (1986).Google Scholar
  17. 17.
    B. Mondovi’, A. Scioscia Santoro, R. Strom, R.Faiola and A. R.ssi Fanelli,Increased immunogenicity of Ehrlich ascites cells after heat treatment, Cancer 30: 885 (1972).Google Scholar
  18. 18.
    R. Cavaliere, B. Mondovi’, G. Moricca, G.Monticelli, P.G. Natali, F. S. Santori, F. Di Filippo, A. Varanese, L. Aloe and A. Rossi Fanelli, Regional perfution hyperthermia, in: Hyperthermia in cancer therapy, F.K. Storm ed. G.K. Hall Medical Publ. Boston, Massachusetts,pp. 369 (1983).Google Scholar
  19. 19.
    J. Otte, Hyperthermia in cancer therapy, Eur. J. Pediatr. 147: 560 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    J. W. Strohbehn, Hyperthermia and cancer therapy:a review of biochemical engineering contributions and challenges, IEEE Trans. Biomed. Eng. 31: 779 (1984).Google Scholar
  21. 21.
    B. Mondovi’, A. Finazzi Agro’, G. Rotilio, R. Strom,G.Moricca and A. R.ssi Fanelli, The biochemicalmechanism of selective heat sensitivity of cancer cells: I. Studies on cellular respiration, Europ.J. Cancer 5: 129 (1969).Google Scholar
  22. 22.
    S. Lewin and D. S. Pepper, Variation of the melting temperature of calf-thymus DNA with pH and type of buffer,Arch. Biochem. Biophys. 109: 192 (1965).Google Scholar
  23. 23.
    J. R. Lepock, Involvement of membranes in cellular responses to hyperthermia, Radiat. Res. 92: 433 (1982).Google Scholar
  24. 24.
    B. Mondovi’, A. Finazzi Agro’, G. Rotilio, R. Strom, G. Moricca and A. Rossi Fanelli, The biochemical mechanism of selective heat sensitivity of cancer cells: II. Studies on nucleuc acids and protein synthesis, Europ. J. Cancer 5: 137 (1969).Google Scholar
  25. 25.
    R. L. Warters and O. L. Stone, The effects of hyperthermia on DNA replication in HeLa cells, Radiat. Res. 93: 71 (1983).Google Scholar
  26. 26.
    W. C. Dewey, A. Westra, H. H. Miller, and H. Nagasawa, Heat induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine, Int. J. Radiat. Biol. 20: 505 (1971).CrossRefGoogle Scholar
  27. 27.
    G. K. Livingston and L. A. Dethlefsen, effects of hyperthermia and X irradiation on sister chromatid exchange(SCE) frequency in Chinese hamster ovary (CHO) cells, Radiat. Res. 77: 513 (1979).Google Scholar
  28. 28.
    A. Bozzi, G. Mariutti, B. Mondovi’ and R. Strom, Effect of temperature on DNA repair synthesis in V79 mammalian cells exposed to ultraviolet light, Bull. Mol. Biol. Med. 12: 59 (1987).Google Scholar
  29. 29.
    G. C. Li, R. G. Evans and G. M. Hahn, Modification and inhibition of repair of potentially lethal X-ray damage by hyperthermia, Radiat. Res. 67: 491 (1976).Google Scholar
  30. 30.
    G. P. Raaphorst, E. I. Azzam and M. Feeley, Potentially lethal radiation damage repair and its inhibition by hyperthermia in normal hamster cells, mouse cells, and transformed mouse cells, Radiat. Res. 113: 171 (1988).Google Scholar
  31. 31.
    D. K. Dube, G. Seal and L. A. Loeb, Differential heat sensitivity of mammalian DNA polymerases, Biochem. Biophys. Res. Commun. 76: 483 (1977).CrossRefGoogle Scholar
  32. 32.
    E. Dikomey, W. Becker and K. Wielckens, Reduction of DNA-polymerase B activity of CHO cells by single and combined heat treatment, Int. J. Radiat. Biol. 52: 775 (1987).CrossRefGoogle Scholar
  33. 33.
    H. H. Kampinga and A. W. T. Konings, Inhibition of repair of X-ray-induced DNA damage by heat: the role of hyperthermic inhibition of DNA polymerase A activity, Radiat. Res. 112: 86 (1987).Google Scholar
  34. 34.
    S. P. Tomasovic, G. N. Turner and W. C. Dewey, Effect of hyperthermia on nonhistone proteins isolated with DNA, Radiat. Res. 73: 535 (1978).Google Scholar
  35. 35.
    R. L. Warters, L. M; Brizgys, R. Sharma and J. L. Roti Roti, Heat shock (45 C) results in an increase of nuclear matrix protein mass in HeLa cells, Int. J. Radiat. Biol. 50: 253 (1986).Google Scholar
  36. 36.
    R. L. Warters, L. M. Brizgys and B. W. Lyons Alterations in nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair, Int. J. Radiat. Biol. 52: 299 (1987).Google Scholar
  37. 37.
    R. Hancock, Topological organization of interphase DNA: the nuclear matrix and other skeletal structures, Biol. Cell 46: 102 (1982).Google Scholar
  38. 38.
    M. R. Mattern and R. B. Painter, Dependence of mammalian DNA replication on DNA supercoiling. I. Effects of ethidium bromide on DNA synthesis in permeable Chinese hamster ovary cells, Biochim. Biophys. Acta 563: 293 (1979).Google Scholar
  39. 39.
    E. D. Hickey and L. A. Weber, Modulation of heat-shock polypeptide synthesis in HeLa cells during hyperthermia and recovery, Biochemistry 21: 1513 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    M. J. Schlesinger, M. Ashburner and A. Tissieres eds., Heat shock-from bacteria to man, Cold Spring harbor Laboratory, Cold Spring Harbor, New York (1982).Google Scholar
  41. 41.
    R. H. Burdon, Heat shock and heat shock proteins, Biochem. J. 240: 313 (1986).PubMedGoogle Scholar
  42. 42.
    K. W. Lanks, Modulators of the eukaryotic heat shock response, Exp. Cell Res. 165: 1 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    S. N. Alahiotis, Heat shock proteins. A new view on the temperature compensation, Comp. Biochem. Physiol. 75B: 379 (1983).Google Scholar
  44. 44.
    T. Hatayama, K. Honda, and M.Yukioka, Hela cells synthetize a specific heat shock protein upon exposure to heat shock at 42 C but not at 45 C, Biochem. Biophys. Res. Commun. 3: 957 (1986).Google Scholar
  45. 45.
    W. W. Richter and O.G. Issinger, Differential heat shock responce of primary human cell cultures and established cell lines, Biochem. Biophys. Res. Commun., 141: 46 (1986).CrossRefGoogle Scholar
  46. 46.
    H. Tsukeda, H. Maekawa, S. Izumi and K. Nitta, Effect of heat shock on protein synthesis by normal and malignant human lung cells in tissue culture, Cancer Res. 41: 5188 (1981).PubMedGoogle Scholar
  47. 47.
    S. P. Tomasovic, L.S. Ramagli, R. A. Simonette, M. J. Wilson, and L.V. Rodriguez, Heat-stress protein of rat lung endothelial and mammary adenocarcinoma cells, Radiat. Res. 110: 45 (1987).Google Scholar
  48. 48.
    M. F. Barbe, M.Tytell, D. J. Gower, and W.J. Welch, Hyperthermia protects against light damage in rat retina, Science 241: 1817 (1988).PubMedCrossRefGoogle Scholar
  49. 49.
    G. C. Li and Z. Werb, Correlation between synthesis of heat shock proteins and the development of thermotholerance in Chinese hamster fibroblast, Proc. Natl. Acad. Sci. Usa 79: 3219 (1982).Google Scholar
  50. 50.
    A. Laszlo and G. C. Li, Heat-resistant variants of Chinese hamster fibroblasts altered in expression of heat shock proteins, Proc. Natl. Acad. Sci. Usa 82: 8029 (1985).PubMedCrossRefGoogle Scholar
  51. 51.
    K. T. Riabowl, L. A. Mizzen and W.J. Welch, Heat shock is lethal to fibroblasts microinjected with antibodies against hsp 70, Science 242: 433 (1988).CrossRefGoogle Scholar
  52. 52.
    R. N. Johnston, and B. L. Kucey, Competitive inhibition of hsp 70 gene expression causes thermosensitivity, Science 242: 1551 (1988).PubMedCrossRefGoogle Scholar
  53. 53.
    W. Welch and J. R. Feramisco, Purification of the major mammalian heat shock proteins, J. Biol. Chem. 257: 14949 (1982).PubMedGoogle Scholar
  54. 54.
    M. J. Schlesinger, Heat shock proteins: the seach for functions, J. Cell Biol. 103: 321 (1986).PubMedCrossRefGoogle Scholar
  55. 55.
    A. Courtneidge and J.M. Bishop, Transit of pp60 to the plasma membrane, Proc. Natl. Acad. Sci. Usa, 79: 7117 (1982).PubMedCrossRefGoogle Scholar
  56. 56.
    R. J. Deshaies, B. D. Knoch and R. Schekman, The role of stress proteins in membrane biogenesis, TIBS 13: 384 (1988).PubMedGoogle Scholar
  57. 57.
    M. Morange, A. Diu, O. Bensaude and C. Babinet, Altered expression of heat shock proteins in embrional carcinoma and mouse early embrionic cells, Mol. Cell. Biol. 4: 730 (1984).Google Scholar
  58. 58.
    W. Leyko and G. Bartosz, Membrane effects of ionozing radiation and hyperthermia, Int. J. Radiat. Biol. 49: 743 (1986).CrossRefGoogle Scholar
  59. 59.
    P. S. Lin, P.S. Lui and S. Tsai, Heat induced ultrastructural injuries in limphoid cells, Exp. Mol. Pathol. 29: 281 (1978).PubMedCrossRefGoogle Scholar
  60. 60.
    H. Bass, J. L. Moore and W. T. Coarkley, Lethality in mammalian cells due to hyperthermia under oxic and hypoxic conditions, Int. J. Radiat. Biol. 49: 743 (1978).Google Scholar
  61. 61.
    G. Arancia, P. Crateri Trovalusci, G. Mariutti and B. Mondovi’, Ultrastructural changes induced by hyperthermia in Chinese hamster V 79 fibroblasts, Int. J. Hyperthermia 5: 341 (1985).CrossRefGoogle Scholar
  62. 62.
    C. Sato, J. Nakayama, K. Kojma, Y. Nishimoto, W. and Nakamura, Effect of hyperthermia on cell surface charge and cell survival in mastocytoma cells, Cancer Res. 41: 4107 (1981).PubMedGoogle Scholar
  63. 63.
    M. Kapiszewska, K. Hyrc and K. Cieszka, Effect of hyperthermia on cell surface charge and cell survival in two cell lines L5178Y, Hyperthermic Oncology 1984, Vol I, Summary paper, edited by Overgaard (London, Philadelphia: Taylor and Francis) pp. 41–44 (1984).Google Scholar
  64. 64.
    R. L. Anderson, S. Leeman, R. Parker, M.J. Hedges, P. W. Vaughan, and S. B. Field, Attachment of fibroblasts following hyperthermia and ultrasound, Int. Radiat. Biol. 46: 399 (1984).CrossRefGoogle Scholar
  65. 65.
    R. B. Mikkelsen and B. Koch, Thermosensitivity of the membrane potential of normal and simiam virus 40-transformed hamster lymphocites, Cancer RES. 41: 209 (1981).PubMedGoogle Scholar
  66. 66.
    R. Strom, A. Scioscia Santoro, C. Crifo’, A. Bozzi, B. Mondovi’ and A. Rossi Fanelli, The biochemical mechanism of selective heat sensitivity of cancer cells. IV. Inhibition of RNA synthesis, Europ. J. cancer 9: 103 (1973).Google Scholar
  67. 67.
    R. Strom, P. Caiafa, B. Mondovi’ and A. Rossi-Fanelli, Effect of temperature on potassium-dependent stimulation of trans cellular migration in normal and neoplastic cells, FEBS Lett. 3: 343 (1969).Google Scholar
  68. 68.
    S. Szmigielski and M. Janiak, Membrane injury in cells exposed in vitro at 43 C hyperthermia, Cancer Therapy by Hyperthermia and Radiation, edited by C. Streffer, D. von Beuningen, F. Dietzel, E. Rottinger, J. E. Robinson, Scherer, S. Seeber, and K. R. Trott (Baltimore Munich: Urban and Schwarzenberg) pp. 169–171 (1978).Google Scholar
  69. 69.
    E. N. Alexandrova, G. S. Kalendo and N. G. Serebryakov, Effect of hyperthermia on early radiation reactions of HeLa cells at the stationary stage of growth, Radiobiologiya 24: 468 (1984).Google Scholar
  70. 70.
    P. N. Yi, Cellular ion content changes during and after hyperthermia, Bioch. Biophys. Res. Commun. 91: 177 (1979).CrossRefGoogle Scholar
  71. 71.
    M. J. Borrelli, W. G. Carlini, B. R. Ransom and W. C. Dewey, Ion-sensitive microelectrode measurements of free intracellular chloride and potassium concentrations in hyperthermia-treated neuroblastoma cells, J. Cell. Physiol. 129: 175 (1986).Google Scholar
  72. 72.
    S. H. Calderwood and G. M. Hahn, Thermal sensitivity of insulin-receptor binding, Biochim. Biophys. Acta, 756: 1 (1983).CrossRefGoogle Scholar
  73. 73.
    B. E. Magun and C. W. Fennie, Effect of hyperthermia on binding, internalization, and degradation of epidermal growth factor, Rad. Res. 86: 133 (1981).Google Scholar
  74. 74.
    K. H. Cheng, S. W. Hui and J. R. Lepock, Protection of membrane ATPase from thermak inactivation by cholesterol, Cancer Res. 47: 1255 (1987).PubMedGoogle Scholar
  75. 75.
    A. Malhotra, L. P. M. Heynen and J. R. Lepock, Role of extracellular calcium in the hyperthermic killing of CHL V79, Radiat. Res. 112: 478 (1987).Google Scholar
  76. 76.
    J. Landry, P. Crete, S. Lamarche and P. Chretien, Activation of Ca-dependent processes during heat shock: role in cell thermoresistence, Radiat. Res. 113: 426 (1988).Google Scholar
  77. 77.
    J. R. Lepock, K. H. Cheng, H. Al-Qysi and J. Kruuv, Thermotropic lipid and protein transitions in Chinese hamster lung cell membranes: relationiship to hyperthermic cell killing, Can. J. Biochem. Cell Biol. 61: 421 (1983).PubMedCrossRefGoogle Scholar
  78. 78.
    G. Arancia, W. Malorni, G. Mariutti and P. Trovalusci, Effect of hyperthermia on the plasma membrane structure of Chinese hamster V79 fibroblasts: a quantitative freeze-fracture study, Radiat. Res. 106: 47 (1986).Google Scholar
  79. 79.
    M. H. Ringdahl, B. Anderstam and C. Vaca, Heat-induced changes in the incorporation of H acetate in membrane lipids, Int. J. Radiat. Biol. 52: 315 (1987).CrossRefGoogle Scholar
  80. 80.
    C. R. Hackenbrock, M. Hochli and R. M. Chau, Calorimetric and freeze fracture analisis of lipid phase transitions and lateral traslational motion of intramembrane particles in mithocondriaa membranes, Biochim. Biophys. Acta 455: 466 (1976).CrossRefGoogle Scholar
  81. 81.
    A. E. Cress, P. S. Culver, T. E. Moon and E. W. Gerner, Correlation between amounts of cellular membrane components and sensitivity to hyperthermia in a variety of mammalian cell lines in culture, Cancer Res. 4: 1716 (1982).Google Scholar
  82. 82.
    M. M. Guffy, J. A. Roserberg, I. Simon and C. P. Burns, Effect of cellular fatty acid alteration on hyperthermic sensitivity in cultured L1210 murine leukemia cells, Cancer Res. 42: 3625 (1982).PubMedGoogle Scholar
  83. 83.
    M. B. Yatvin, N. M. Abuirmeileh, J. W. Vorpahl and C. E. Elson, Biological optimization of hyperthermia: modification of tumor membrane lipids, Eur. J. Cancer Clin. Oncol. 19: 657 (1985).Google Scholar
  84. 84.
    L. Marcocci, N. Laudonio, G. Zupi, E. Poggi, C. Greco, A. Bozzi, I. Mavelli, G. Rotilio and B.Mondovi’, Liposomes and heat sensitivity of tumor cells, J. Exp. Clin. Res. 7: 1 (1988).Google Scholar
  85. 85.
    J. DiGiuseppi and I. Fridovich, The toxicology of molecular oxygen, CRC Critical. Rev. Toxicol. 12:315 (1984)CrossRefGoogle Scholar
  86. 86.
    T. Ramasarma, Generation of H O in biomembranes,Biochem. Biophys. Acta 694: 69 (1982).Google Scholar
  87. 87.
    W.J. Welch and J. P. Suhan, Morphological study of the mammalian stress response: characterizationof changes in cythoplasmic organelles, cytoskeleton,and nucleoli, and the apparence of intranuclear actin filaments in rat fibroblasts after heat-shock treatment, J. Cell Biol. 101:1198(1985).PubMedCrossRefGoogle Scholar
  88. 88.
    M. Younes and C. P. Siegers, Interrelation between lipid peroxidation and hepatotoxic events,Biochem. Pharmacol. 33: 2001 (1984).Google Scholar
  89. 89.
    P. Buffa, V. Guarriera-Bobyleva, V. Muscatello,I.Pasquali Ronchetti, Conformational changes in the mithocondria associated with uncoupling of oxidative phosphrylation in vivo and in vitro,Nature 226: 272 (1970).Google Scholar
  90. 90.
    R. E. Durand, Potentiation of radiation lethality by hyperthermia in a tumor model: effect of sequence, degree and duration of heating, Int. J. Radiat. Oncol. Biol. Phys. 4: 401 (1978).Google Scholar
  91. 91.
    A. Floridi, A. Nista, M. G. Paggi, L. Pellegrini, A.Bagnato,M.Fanciulli and A. Caputo, Effect of hyperthermia on electron transport in Ehrlich ascites tumor mithicondria,Exp. Mol. Pathol. 46: 279(1987).Google Scholar
  92. 92.
    E. N. Christiansen and E. Kvamme, Effect of thermal treatment on mithocondria of brain, liver, ascites cells, Acta Physiol. Scand 76: 472(1969)PubMedCrossRefGoogle Scholar
  93. 93.
    M. A. Hass and D. Massaro, Regulation of the synthesis of superoxide dismutases in rat lungs during oxidant and hyperthermic stresses, J. Biol. Chem. 263: 776 (1988).PubMedGoogle Scholar
  94. 94.
    J. M. McCord, Oxygen derived free radicals in postischemic tissue injury, New Engl. J. Med.312:159 (1985).Google Scholar
  95. 95.
    M. A. Steven and S. K. Calderwood G. M. Hanh, Rapid increases in inositol triphosphate and intracellular Ca after heat shock, Biochem. Biophys. Res. Commun. 137: 826 (1986).CrossRefGoogle Scholar
  96. 96.
    E. Ben-Hur and E. Riklis, Enhancement of thermal killing by polyamines, Rad. Res. 78: 321 (1979).Google Scholar
  97. 97.
    B. Mondovi and P. Riccio, Biological basis of thermosensitivity of tumor cells, Proceeding of II international conference on Applications of Physics to Medicine and Biology Z. Bajzer, P.Baxa, C. Francioni, pp. 297 (1984).Google Scholar
  98. 98.
    B. Mondovi’, P. Guerrieri, M. T. Costa and S.Sabatini,Amine oxidases inhibitors and biogenic amines metabolism, Adv. Polyamine Res. 3: 75(1981)Google Scholar
  99. 99.
    B. Mondovi, P. Gerosa and R. Cavaliere, Studies on the effect of polyamines and their products onEhrlich ascites tumors, Agents and Actions, 12:450(1982)PubMedCrossRefGoogle Scholar
  100. 100.
    R. S. Kramer and R. D. Pearlstein, Reversible uncoupling of oxidative phosphorilation at low oxygen tension, Proc. Natl. Acad. Sci. USA 80: 5807 (1983).PubMedCrossRefGoogle Scholar
  101. 101.
    D. P. Jones, Hypoxia and drug metabolism, Biochem. Pharm. 30: 1019 (1981).Google Scholar
  102. 102.
    I. Mavelli and G. Rotilio, Enzymatic protection against intracellular oxidative processes, in: Advances on oxygen radicals and radioprotection. A. Breccia, C. L. Greenstock, M. Tamba. Lo Scarabeo, pp. 65 (1983).Google Scholar
  103. 103.
    L. W. Oberley and G. R. Buettner, Role of superoxide dismutase in cancer, Cancer Res. 39: 1141 (1979).PubMedGoogle Scholar
  104. 104.
    A. Bozzi, I. Mavelli, A. Finazzi Agro’, R. Strom, A.M. Wolf, B. Mondovi’ and G. Rotilio, Enzyme defense against oxygen derivatives. II.Erythrocytes and tumor cells, Molec. Cell. Biochem. 10: 11 (1976).Google Scholar
  105. 105.
    I. Mavelli, G. Rotilio, M. R. Ciriolo, G. Melino and O. Sapora, Antioxygenic enzymes as tumor markers: a critical reassesment of the respective roles of superoxide dismutase and gluthatione peroxidase, in: Human marker, Cimino, Birkmayer, Klavins, Timental, Salvatore. pp. 883 (1987).Google Scholar
  106. 106.
    A. Bozzi, I. Mavelli, B. Mondovi’, R. Strom and G. Rotilio, Differential sensitivity of tumor cells to externally generated hydrogen peroxide. Role of glutathione and related enzymes, Cancer Biochem. Biophys. 3: 135 (1979).Google Scholar
  107. 107.
    A. Bozzi, I. Mavelli, B. Mondovi’, R. Strom and G. Rotilio, Differential cytotoxicity of daunomycin in tumor cells is related to glutathione-dependent hydrogen peroxide metabolism, Biochem. J. 194: 369 (1981).Google Scholar
  108. 108.
    R. A. Omar, S. Yano and Y. Kikkawa, Antioxidant enzymes and survival of normal and Simiam Virus 40-transformed mouse embryo cells after hyperthermia, Cancer Res. 47: 3473–3476 (1987).PubMedGoogle Scholar
  109. 109.
    P. L. Lin, L. Kwock and C.E. Butterflield, Diethyldithiocarbamate enhancement of radiation and hyperthermic effcts on Chinese hamster cells in vitro, Rad. Res. 77: 501 (1979).Google Scholar
  110. 110.
    J. B. Mitchell, A. Russo, T. J. Kinsella and E. Glatstein, Glutathione elevation during thermotolerance induction and thermosensitization by gluthatione depletion, Cancer Res. 43: 987 (1983).PubMedGoogle Scholar
  111. 111.
    M. L. Freeman, A. W. Malcolm and M. J. Meredith, Decreased intracellular glutathione concentration and increased hyperthermic cytotoxicity in an acid enviromental, Cancer Res. 45: 504 (1985).PubMedGoogle Scholar
  112. 112.
    B. Chance, H. Sies and S. Boveris, Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59: 527 (1979).Google Scholar
  113. 113.
    J. D. Crapo and J. M. McCord, Oxygen-induced changes in pulmonary superoxide dismutase assayed by antibody titration, Am. J. Physiol. 231: 1196 (1976).PubMedGoogle Scholar
  114. 114.
    S. E. Dryer, R. L. Dryer and A. P. Author, Enhancement of mitochondrial cyanide-resistent superoxide dismutase in the liver of rats treated with 2,4-dinitrophenol, J. Biol. Chem. 255: 1054 (1980).PubMedGoogle Scholar
  115. 115.
    D. P. Loven, D. L. Leeper and L. W. Oberley, Superoxide dismutase levels in Chinese hamster ovary cells and ovarian carcinoma cells after hyperthermia or exposure to cycloheximide, Cancer Res. 45: 3029 (1985).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Lucia Marcocci
    • 1
  • Bruno Mondovi
    • 1
  1. 1.Dept. Biochemical Sciences and CNR Centre for Molecular BiologyUniv. “La Sapienza”RomeItaly

Personalised recommendations