Heat Shock Proteins

  • Beppino C. Giovanella
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 267)


The finding that tumor cells are more thermosensitive than their normal counterparts (1–4) prompted research on the effect of heat on normal and neoplastic cells. In 1970, the phenomenon of thermotolerance was described for the first time (5). Cells of L12l0 leukemia after being exposed to sublethal hyperthermia (52% of BDF1 mice survivors after inoculation of l×104 L1210 cells treated for 2 hours at 42°C in Fischer medium versus 0% survivors after inoculation of same number of cells treated first at 40°C for 4 hours and afterward at 42°C for 2 hours). This result appears paradoxical. Cells that had received a more prolonged heat treatment (4 hours at 40°C + 2 hours at 42°C) survived better than cells less treated (2 hours at 42°C only). According to the nomogram used, the difference between 50% and 0% mice survival observed corresponded to a one-log difference in cell killing. It appeared that pre-treatment with heat rendered the cell capable to withstand further exposure to the same injury better than cells not pre-treated.


Heat Shock Heat Shock Protein Neoplastic Cell Sodium Arsenite HSP70 Gene Expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Cavaliere, E. C. Ciocatto, B. C. Giovanella, C. Heidelberger, R. O. Johnson, M. Margottini, B. Mondovi, G. Moricca, and A. Rossi-Fanelli. Selective Heat Sensitivity of Cancer Cells - Biochemical and Clinical Studies, Cancer 20: 1351 (1967).PubMedCrossRefGoogle Scholar
  2. 2.
    T. T. Chen and C. Heidelberger. Quantitative Studies on the Malignant Transformation of Mouse Prostate Cells by Carcinogenic Hydrocarbons In Vitro, Int. J. Cancer 4:166 (1969).PubMedCrossRefGoogle Scholar
  3. 3.
    B. C. Giovanella, A. C. Morgan, J. S. Stehlin, and L. J. Williams. Selective Lethal Effect of Supranormal Temperatures on Mouse Sarcoma Cells, Cancer Res. 33: 2568 (1973).PubMedGoogle Scholar
  4. 4.
    B. C. Giovanella, J. S. Stehlin, and A. C. Morgan. Selective Lethal Effect of Supranormal Temperatures on Human Neoplastic Cells, Cancer Res. 36: 3944 (1976).PubMedGoogle Scholar
  5. 5.
    B. C. Giovanella, W. A. Lohman, and C. Heidelberger. Effects of Elevated Temperatures and Drugs on the Viability of L1210 Leukemia Cells, Cancer Res. 30: 1623 (1970).PubMedGoogle Scholar
  6. 6.
    E. W. Cerner and M. J. Schneider. Induced Thermal Resistance in McLa Cells. Nature 256: 500 (1975).CrossRefGoogle Scholar
  7. 7.
    E. W. Cerner, et al. A Transient Thermotolerant Survival Response Produced by Single Thermal Doses in HeLa Cells, Cancer Res. 36: 1035 (1976).Google Scholar
  8. 8.
    E. W. Cerner. “Thermotolerance in Hyperthermia in Cancer Therapy.” F. K. Storm, ed., G. K. Hall, Boston, Mass. (1983), pp. 141–162.Google Scholar
  9. 9.
    K. J. Henle and D. B. Leeper. Interaction of Hyperthermia and Radiation in CHO Cells: Recovery Kinetics, Radiation Res. 66: 505 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Tissieres, H. K. Mitchell, and U. M. Tracy. Protein Synthesis in Salivary Glands of Drosophila Melanogaster: Relation to Chromosome Puffs, J. Mol. Biol. 84:389 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    L. McAlister and D. B. Finkelstien. Heat Shock Proteins and Thermal Resistance in Yeast, Biochem. Biophys. Res. Comm. 98:819 (1980).CrossRefGoogle Scholar
  12. 12.
    G. C. Li and Z. Werb. Correlation Between Synthesis of Heat Shock Proteins and Development of Thermotolerance in Chinese Hamster Fibroblasts, PNAS 79: 3219 (1982).Google Scholar
  13. 13.
    J. R. Subjectk, J. J. Sciandra, D. F. Chao, and R. J. Johnson. Heat Shock Proteins and Biological Response to Hyperthermia, Br. J. Cancer 45:127 (1982).Google Scholar
  14. 14.
    J. Landry, D. Berner, P. Chretian, L. M. Nicole, R. M. Tanguay, and N. Marceau. Synthesis and Degradation of Heat Shock Proteins During Development and Decay of Thermotolerance, Cancer Res. 42: 2457 (1982).PubMedGoogle Scholar
  15. 15.
    G. C. Li and G. M. Hahn. Ethanol-Induced Tolerance to Heat and Adriamycin, Nature 274: 699 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    G. C. Li. Induction of Thermotolerance and Enhanced Heat Shock Protein Synthesis in Chinese Hamster Fibroblasts by Sodium Arsenite and by Ethanol, J. Cell Physiol. 115:115 (1983).CrossRefGoogle Scholar
  17. 17.
    K. T. Riabowol, L. A. Mizzen, and W. J. Welch. Heat Shock is Lethal to Fibroblasts Microinjected with Antibodies Against HSP70, Science 242: 433 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    R. N. Johnson and B. L. Kucey. Competitive Inhibition of HSP70 Gene Expression Causes Thermosensitivity, Science 242: 1551 (1988).CrossRefGoogle Scholar
  19. 19.
    M. J. Lewis and H. R. B. Pelham. Involvement of ATP in the Nuclear and Nucleolar Functions of the 70KD Heat Shock Protein, EMBO J. 4: 3137 (1985).PubMedGoogle Scholar
  20. 20.
    R. J. Deshaies, B. D. Koch, Werner, M. Washburne, E. A. Craig, and R. Schekman. A Subfamily of Stress Proteins Facilitates Translocation of Secretory and Mitochondria Precursor Polypeptides, Nature 332: 880 (1988).CrossRefGoogle Scholar
  21. 21.
    W. J. Chirico, M. G. Waters, and G. Blobel, 70K Heat Shock Related Proteins Stimulate Protein Translocation. into Microsomes, Nature 332: 802 (1988).CrossRefGoogle Scholar
  22. 22.
    O. Pinhasi-Kimni, D. Michalovitz, A. Ben-Zeev, and M. Oren. Specific Interaction Between the P53 Cellular Tumor Antigen and Major Heat Shock Proteins, Nature 320: 182 (1986).CrossRefGoogle Scholar
  23. 23.
    H. W. Sturzbecher, P. Chumakov, W. J. Welch, and J. R. Jenkins. Mutant P53 Proteins Bind HSP 72/73 Heat Shock Related Proteins in SV40 Transformed Monkey Cells, Oncogene J. 1: 201 (1987).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Beppino C. Giovanella
    • 1
  1. 1.Stehlin Foundation for Cancer ResearchHoustonUSA

Personalised recommendations