Clinical Relevance of Heat Shock Proteins

  • Andrea Delpino
  • Elisabetta Mattei
  • Anna Maria Mileo
  • Umberto Ferrini
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 267)


A sudden increase of the physiological temperature (heat shock) elicits in cells a specific sequence of biochemical events designated, on the whole, as “heat shock response”1. Since this response occurs whenever the cells are exposed to adverse, stressing, conditions this behaviour is also generically referred to as stress response.


Heat Shock Protein Heat Shock Response Human Melanoma Cell Human Melanoma Cell Line Mouse Embryo Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Lindquist, The heat shock response. Annual Rev. Biochem. 55: 1151 (1986)CrossRefGoogle Scholar
  2. 2.
    U.R. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T 4. Nature (London) 227: 680 (1970)CrossRefGoogle Scholar
  3. 3.
    P.H. O’Farrel, High resolution two dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007 (1975)Google Scholar
  4. 4.
    U. Ferrini, R.Falcioni, A. Delpino R. Cavaliere, G. Zupi and P.G. Natali, Heat shock proteins produced by two human melanoma cell lines: absence of correlation with thermosensitivity. Int. J. Cancer 34: 651 (1984)PubMedCrossRefGoogle Scholar
  5. 5.
    G.C. Li and J.Y. Mak, Induction of heat shock protein synthesis in murine tumors during the development of thermotolerance. Cancer Res. 45: 3816 (1985)PubMedGoogle Scholar
  6. 6.
    G.C. Li and A. Laszlo, Thermotolerance in mammalian cells: a possible role for heat shock proteins. In “Changes in Eukaryotic Gene Expression in Response to Environmental Stress”, B.G. Atkinson and D.B. Walden Ed., Academic Press, Orlando, (1985)Google Scholar
  7. 7.
    J.J. Heikkila, M. Rloc, J. Bury, G.A. Schultz and L.W. Browder, Acquisition of the heat-shock response and thermotolerance during early development of Xenopus laevis. Dev. Biol. 107: 483 (1985)PubMedCrossRefGoogle Scholar
  8. 8.
    M. C. Roccheri, M.G. Di Bernardo and G. Giudice, Synthesis of heat shock proteins in developing sea urchins. Dey. Biol. 83: 173 (1981).CrossRefGoogle Scholar
  9. 9.
    G. Graziosi, F. Micali, R. Marzani, F. De Cristini and A. Savioni, Variability of response of early Drosophila embryos to heat shock. J. Exp. Zool. 214: 141 (1980)CrossRefGoogle Scholar
  10. 10.
    G.M. Hahn and G.C. Li, Thermotolerance and heat shock proteins in mammalian cells. Radiation Res. 92: 452 (1982)PubMedCrossRefGoogle Scholar
  11. 11.
    J. Landry and P. Chrétien, Relationship between hyperthermia induced heat shock proteins and thermotolerance in Morris hepatoma cells. Can. J. Biochem. Cell Biol. 61: 428 (1983)PubMedCrossRefGoogle Scholar
  12. 12.
    E.B. Boon-Niermeijer, J.E.M. Souren and R. Van Wijk, Thermotolerance induced by 2,4-dinitrophenol. Int. J. Hyperthermia 3: 133 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    G.C. Li and A. Laszlo, Amino acid analogs while inducing heat shock proteins sensitize CHO cells to thermal damage. J. Cel. Physiol. 122: 91 (1985)CrossRefGoogle Scholar
  14. 14.
    K. Watson, G. Dunlop and R. Cavicchioli, Mitochondrial and cytoplasmic protein syntheses are not required for heat shock acquisition of ethanol and thermotolerance in yeast. FEBS Letters 172: 299 (1984)PubMedCrossRefGoogle Scholar
  15. 15.
    A. Laszlo and G.C. Li, Heat resistant variants of Chinese fibroblasts altered in expression of heat shock protein. Proc. Natl. Acad. 3ci. USA 82: 8029 (1985)CrossRefGoogle Scholar
  16. 16.
    R.L. Anderson, T.W. Tao, D.A. Betten and G.M. Hahn, Heat shock protein levels are not elevated in heat resistant B-16 melanoma cells. Radiation Res. 105: 240 (1986)PubMedCrossRefGoogle Scholar
  17. 17.
    R.A. Omar and K.W. Lanks, Heat shock protein synthesis and cell survival in clones of normal and simian virus 40-transformed mouse embryo cells. Cancer Res. 44: 3976 (1984)PubMedGoogle Scholar
  18. 18.
    G.C. Li and J.Y. Mak, Re-induction of hsp 70 synthesis: an assay for thermotolerance. Int. J. Hyperthermia 5: 382 (1989)Google Scholar
  19. 19.
    F. Mattei, A. Delpino, A.M. Mileo and U. Ferrini, Absence of acquired thermotolerance in murine tumors unable to increase the expression of heat shock proteins following stress stimuli. Tumori 74: 513 (1988)PubMedGoogle Scholar
  20. 20.
    T. Yamamori and T. Yura, Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia cola K-12. Proc. Natl. Acad. Sci. USA 79: 860 (1982)PubMedCrossRefGoogle Scholar
  21. 21.
    M.L. Cunnigham, J.G. Peak and M.J. Peak, Single-strand DNA breaks in rodent and human cells produced by superoxide anion or its reduction products. Mutation Res. 184: 217 (1987)Google Scholar
  22. 22.
    D.P. Loven, D.E. Leeper and L.W. Oberlay, Superoxide dismutase levels in Chinese hamster ovary cells and ovarian carcinoma cells after hyperthermia or exposure to cycloheximide. Cancer Res. 45: 3029 (1985)PubMedGoogle Scholar
  23. 23.
    S.W. Carper, J.J. Duffy and E.W. Gerner, Heat shock proteins in thermotolerance and other cellular processes. Cancer Res. 47: 5249 (1987)PubMedGoogle Scholar
  24. 24.
    E.K Boon-Niermeijer, J.E.M. Souren, A.M. De Waal and R. Van Wijk, Thermotolerance induced by heat and ethanol. Int. J. Hyperthermia 4: 211 (1988)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Andrea Delpino
    • 1
  • Elisabetta Mattei
    • 1
  • Anna Maria Mileo
    • 1
  • Umberto Ferrini
    • 1
  1. 1.Istituto Regina Elena per lo Studio e la Cura dei TumoriRomaItaly

Personalised recommendations