An Overview of the Role of Radiation Therapy and Hyperthermia in Treatment of Malignant Melanoma

  • Homayoon Shidnia
  • Ned B. Hornback
  • Rong-Nian Shen
  • Robert E. Shupe
  • Marc Yune
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 267)


From January, 1970 until December, 1987, a total of 188 malignant melanoma lesions in 92 patients were treated at the Department of Radiation Oncology, Indiana University Medical Center, Indianapolis, Indiana. Response was evaluated in 181 evaluable lesions treated by radiation alone and radiation plus hyperthermia to assess differences in response to a total dose, dose per fraction and overall time of treatment, as well as effects of adjunctive hyperthermia treatment.

Different fractions of radiation, ranging from 100 cGy to 1000 cGy, were used. Local hyperthermia was administered for one hour following radiation treatment using microwave with different frequencies. The tumor temperature was also monitored during treatment.

With a radiation dose of less than 400 cGy per fraction, and complete response rate (CR) was 34% (16/47) and the objective response rate (OR) was 62% (29/47). When hyperthermia was added, the complete response rate rose from 34% to 70%. With a dose of more than 400 cGy per fraction, the CR was 63% (48/77), and OR was 95% (73/77). When hyperthermia was added, the complete response rate rose from 63% to 77%.


Objective Response Rate Complete Response Rate Measurable Lesion Conventional Fractionation Thermal Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Barranco SC, Romsdahl MM, Humphrey Rm: The Radiation Response of Human Malignant Melanoma Cells Grwon in Vitra. Cancer Res; 31–830–833, 1971.Google Scholar
  2. 2).
    Chaoul H, Greineider K; Die Behandlung des Malignen Melanoms mit der Rontgen Nahbestrahlung. Strahlentherapie; 56: 40 – 49, 1936.Google Scholar
  3. 3).
    Cooper JS, Kopf AW, Bart RS: Present Role and Future Prospects for Radiotherapy in the Management of Malignant Melanomas. J. Dermatol Surg Oncol; 5(2): 134–139, 1.979.Google Scholar
  4. 4).
    Creagan ET, Cupps Re, Ivins JC, Pritchard DJ, Sim FH, Soule EH, O’Fallon Jr: Adjuvant Radiation Therapy for Regional Nodal Metastases from Malignant Melanoma. Cancer; 42 (5): 2206–2210, 1978.PubMedCrossRefGoogle Scholar
  5. 5).
    Emami B, Perez CA, Konefal J, Pilepich MV, Leyovich, L: Thermoradiotherapy of Malignant Melanoma. Int J Hyperthermia; 4: 373 – 381, 1988.PubMedCrossRefGoogle Scholar
  6. 6).
    Evans WA, Leuctia T: The Treatment of Melanotic Tumors of Skin Pigmented and Malignant Melanoma. Am J Roentgenol; 26: 236–256, 1931.Google Scholar
  7. 7).
    Dewey, DL: The Radiosensitivity of Melanoma Cells in Culture. Br J Radiol; 44:816, 1971Google Scholar
  8. 8).
    Doss, LL, Memula N: The Radioresponsiveness of Melanoma. Int J Radiation Oncology Biol Phys; 8: 1131 – 1134, 1982.Google Scholar
  9. 9).
    Fletcher GH, BArkley HT Jr, Shukovaky LJ: Present Status of the Time Factor in Clinical Radiotherapy. J Radiol; 55: 745 – 751, 1974.Google Scholar
  10. 10).
    Greineder K, Neumann W: Neue Ergebnisse uber die Nahestrahlung des Malignen Melanoms. Strahlentherapie; 66: 89–95, 1939.Google Scholar
  11. 11).
    Habermalz HJ, Fischer, JJ: Radiation Therapy of Malignant Melanoma. Cancer; 38: 2258–2262, 1976.PubMedCrossRefGoogle Scholar
  12. 12).
    Habermalz H: Irradiation of Malignant Melanoma Experience in the Past and Present. Int J Radiation Oncology Biol Phys; 7: 131–133, 1981.CrossRefGoogle Scholar
  13. 13).
    Hall E: Time, Dose and Fractionation in Radiotherapy. Radiobiology for the Radiologist. 2nd ed., Hagerstown MD: Harper and Row; 273–290, 1978.Google Scholar
  14. 14).
    Harwood AR, Cancuart F, Fitzpatrick PJ, Brown T: Radiotherapy in Nonlentiginous Melanoma of the Head and Neck. Cancer; 48: 2599 – 2605, 1981PubMedCrossRefGoogle Scholar
  15. 15).
    Hellriegel W.: Indikation und Ergebnisse der perkutanen. Stahlenbehandlung des Malignen Melanoms. Strahlentherapie; 149 (1) 1 – 20, 1975.PubMedGoogle Scholar
  16. 16).
    Hilaris BS, Raben M, Calabrese AS, Phillips RF, Henschke UK: Value of Radiation Therapy for Distant Metastases from Malignant Melanoma. Cancer; 16 (6): 765 – 773, 1963.PubMedCrossRefGoogle Scholar
  17. 17).
    Hornsey S: The Radiosensitivity of Melanoma Cells in Culture. Br J Radiol; 45: 158, 1972.PubMedCrossRefGoogle Scholar
  18. 18).
    Hornsey S: The Relationship between Total Dose, Number of Fractions and Fraction Size in the Response of Malignant Melanoma in Patients. Br J Radiol; 51–905–909, 1978.Google Scholar
  19. 19).
    Kim JH, Hahn EW: Clinical and Bilogical Studies of Localized Hyperthermia. Cancer Res. 39: 2. 258 – 2261, 1969.Google Scholar
  20. 20).
    Kim JH, Hahn EW, Tokita N: Combination Hyperthermia and Radiation Therapy for Cutaneous Malignant Melanoma. Cancer41–2143–2148, 1978.Google Scholar
  21. 21).
    Kim JH, Hahn EW, Sultan AA: Hyperthermia and Radiation Therapy for Melanoma. Cancer; 50, 478 – 482, 1982.PubMedCrossRefGoogle Scholar
  22. 22).
    Lobo PA, Liebner EJ: Radiotherapy in the Management of Malignant Melanoma. Int J Radiation Oncology Biol Phys; 7: 20 – 26, 1981.Google Scholar
  23. 23).
    Overgaard J: Radiation Treatment of Malignant Melanoma. Int J Radiation Oncology Biol Phys; 6: 41 – 44, 1980.Google Scholar
  24. 24).
    Overgaard J: The Role of Radiotherapy in Recurrent and Metastatic Malignant Melanoma: A Clinical Radiological Study. Int J Radiation Oncology Biol Phys; 12: 867 – 872, 1986.CrossRefGoogle Scholar
  25. 25).
    Overgaard J: Some Problems Related to the Clinical Use of Thermal Insoffect Dose. Int. J. Hyperthermia; 3(4):329– 336, 1987. PubMedCrossRefGoogle Scholar
  26. 26).
    Overgqaard J: The Current and Potential Role of Hyperthermia in Radiotherapy. Int J. Radiation Oncology Biol Phys; 16: 535 – 549, 1989.CrossRefGoogle Scholar
  27. 27).
    Rappaport AH, Phillips TL: Local Control of Malignant Melanoma by Radiation. Int J Radiation Oncology Biol Phys (Supplement 2 ); 2: 126, 1977.CrossRefGoogle Scholar
  28. 28).
    Sapareto S: Thermal Dose Determinations in Cancer Therapy. Int J Radiation Oncology Biol Phys; 10: 787 – 800, 1984.CrossRefGoogle Scholar
  29. 29).
    Shen R, Hornback N, Shidnia H, Lu L, Broxmeyer H: Comparative Effect of Changes in Irradiation Dosage and Timing on the Growth in Vitro of Two Human Melanoma Cell Line. Int J Radiation Oncology Biol Phys submitted May 29, 1988. Google Scholar
  30. 30).
    Shen R, Hornback N, Shidnia H, Lu L, Montebello J, Brahmi Z: A Comparison of Lung Metastasis and Natural Killer Cell ACtivity in Daily Fractions and Weekly Fractions of Radiation Therapy on Murine B16a Melanoma. Radiation Res; 114, 1988.CrossRefGoogle Scholar
  31. 31).
    Storck H, Ott F: Verlauf and Therapie der Malignen Melanoma. Schweiz Med Wochenschr; 106 (51): 1871 – 1877, 1976.PubMedGoogle Scholar
  32. 32).
    Strauss A, Dritschilo A, Nathanson L, Piro AF: Radiation Therapy of Malignant Melanomas: An Evaluation of Clinically Used Fractionation Schemes. Cancer: 1262–1266, 1981.Google Scholar
  33. 33).
    Trott KR, VonLieven H, Kummermehr J, Skopal D, Lukacs S, Braun-Falco 0: The Radiosensitivity of Malignant Melanomas Part I: Experimental Studies. Int J Radiation Oncology Biol Phys; 7: 9 – 13, 1981.CrossRefGoogle Scholar
  34. 34).
    Wolfelder H: Welche Behandlung Bietet Die Best Heilungsaussicht Bei Melanosarkoma. Roentgenpraxis; 1:19– 27, 1929. Google Scholar
  35. 35).
    Weitzel G: Die Strahlenbehandlung des Melanomas. Schweiz Med Wschs; 100: 982 – 987, 1970.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Homayoon Shidnia
    • 1
  • Ned B. Hornback
    • 1
  • Rong-Nian Shen
    • 1
  • Robert E. Shupe
    • 1
  • Marc Yune
    • 1
  1. 1.Indiana University Medical CenterIndianapolisUSA

Personalised recommendations