Perspectives for the Combined Use of Photodynamic Therapy and Hyperthermia in Cancer Patient

  • I. Freitas
  • P. Pontiggia
  • G. F. Baronzio
  • J. R. McLaren
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 267)


Chemotherapy and/or radiotherapy widely used in the last decades for cancer treatment are frequently barely effective on tumor growth and metastatic spread. Years of disappointing results, at least for the large majority of human solid tumors, induced the search for more active treatments. Photodynamic therapy (PDT), a relatively new method, has been tested for the treatment of a certain number of chemoresistant cancers, sometimes successfully (1). Recent in vitro and in vivo experiments suggest that the combination of hyperthermia (HT) and PDT can increase the therapeutic effect of these two therapies when used in combination (2,3,4).


Photodynamic Therapy Tumor Vasculature Hypoxic Cell Adenylate Energy Charge Chemoresistant Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    T.J. Dougherty:Photodynamic Therapy. In G.YORI and C.PERRIA eds, photodynamic Therapy of Tumors and Other Diseases. Libreria Progetto, Padova,1985Google Scholar
  2. 2).
    S.M. WALDOW, B.W. HENDERSON, T.J. Dougherty: Potentiation of Photodynamic Therapy by Heat: Effect of Sequence and Time Interval Between Treatments in Vivo. Lasers. Surg. Med. 5: 83–94, 1985PubMedCrossRefGoogle Scholar
  3. 3).
    T.S. Mang, T.J. Dougherty: Time and Sequence Dependent Influence of In Vivo Photodynamic Therapy Survival by Hyperthermia. Photochem. Photobiol 42: 533–540, 1985.PubMedCrossRefGoogle Scholar
  4. 4).
    P.C. LEVENDAG et al.: Interaction of Interstitial Photodynamic Therapy and Interstitial Hyperthermia in a Rat Rabdomiosarcoma. Abstracts in Biological effect of Nonionizing Electromagnetic Radiation, 37–38, 1989Google Scholar
  5. 5).
    P. BUGELSKY, C.W. PORTER, T.J. DOUGHERTY: Autoradiographic Distribution of Hematoporphyrin Derivative in Normal and Tumor Tissue of The Mouse. Cancer. Res 41: 4606–4612, 1982Google Scholar
  6. 6).
    J. DENEKAMP: Endothelial Cell Proliferation as a Novel Approch to Targeting Tumor Therapy. Br. J. Cancer 45: 136–139, 1982PubMedCrossRefGoogle Scholar
  7. 7).
    P. VAUPEL: Hypoxia in Neoplastic Tissue. Microvasc. Res. 13: 399–408, 1977PubMedCrossRefGoogle Scholar
  8. 8).
    J.T. LEITH, R.C. MILLER, E.W. GERNER, M.L. BOONE: Hyperthermic Potentiation: Biological Aspects and Applications to Radiation Therapy. Cancer 39: 766s - 779s, 1977CrossRefGoogle Scholar
  9. 9).
    H.I.BICHER, F.W. HETZEL, P. VAUPEL, T.S. SANDHU: Microcirculation Modifications by Localized Microwave Hyperthermia and Hematophorphyrin Phototherapy. Biblioth. Anat. 20: 628–632, 1981Google Scholar
  10. 10).
    P.VAUPEL, S. FRINAK, H.I.BICHER: Heterigenous Oxygen Partial Pressure and ph Distribution in CH3 Mouse Mammary Carcinoma. Cancer. Res. 41: 2008–2013, 1981Google Scholar
  11. 11).
    D.R. DOIRON, C.J. GOMER: Porphyrin Locaslization and Treatment of Tumors, Alan R. Liss Ed. 1984Google Scholar
  12. 12).
    N. AI-LAN, P. OIONG-OIAN: Studies on Hematophorphyrin-photosensitized Effect on Human Cancer Cells in Vitro: TEM and SEM observations. In Methods in Phorphyrin Photosensitization, edited by D. Kessel, Plenum Press, 117–122, 1985Google Scholar
  13. 13).
    D. KESSEL: Effect of Photoactivated Porphyrin at The Cell Surface of Leukemia L1210 Cells. Biochemistry 16: 3443–3449, 1977PubMedCrossRefGoogle Scholar
  14. 14).
    I. FREITAS: Photodynamic Therapy and Hyperthermia:Common and Complementary Effects. Medecine Biologie Enviornment 14: 93–111, 1986Google Scholar
  15. 15).
    T. CHRISTENSEN, J.MOAN, E. WIBE.R. OFTEBRO:Photodynamic Effect of Haematoporphyrin Thoughout The Cell Cycle of The Human Cell Line NHIK 3025 Cultivated in VItro. Br. J. Cancer 39: 64–68, 1979Google Scholar
  16. 16).
    J.OVERGAARD: Ultrastructure of Murine Mammary Carcinoma Exposed to Hyperthermia in Vivo. Cancer Res. 36: 983. 985, 1976Google Scholar
  17. 17).
    P.S. LIN, F.H. WALLACH, S. TSAI: Temperature Induced Variations in The Surface Topology of Cultured Lymphocytes Are Revealed by Scanning Electron Microscopy. Proc. Nat. Acad. Sci. USA 70: 2492–2496, 1973PubMedCrossRefGoogle Scholar
  18. 18).
    J.R. LEPOCK, P. MASSICOTE-NOLAN, G.S. RULE, J. KRUV:Lack of COrrelation Bewteen Hyperthermic Cell Killing, Thermotolerance, and Membrane Lipid Fluidity. Radiat. Res. 87: 300–313, 1981Google Scholar
  19. 19).
    D.B. LEPE:Molecular and Cellular Mechanisms of Hyperthermia Alone or Combined with Other Modalities. In: Hyperthermic Oncology, 1984, edited by J. Overgaard, Taylor and Francis, London, pp 9–40, 1984Google Scholar
  20. 20).
    R.L. ANDERSON,G.M. HAHN:Differential Effects of Hyperthermia on the Na, K ATPase of Chinses Hamster Ovary Cells. Radiat. Res. 102: 314–323, 1985CrossRefGoogle Scholar
  21. 21).
    G.M. BARRATT,E.D. WILLS: The Effect of Hyperthermia and Radiation on Lysosomal Enzyme Activity of Mouse Mammary Tumors. Eur. J. Cancer 15: 243–250, 1979CrossRefGoogle Scholar
  22. 22).
    C. TURANO,A. FERRARO,R. STROM,R. CAVALIERE, A. ROSSI FANELLI: The Biochemical Mechanism of Selective Heat Sensitivity of Cancer Cells III. Studies on Lysosomes. Eur. J. Cancer 6: 67–72, 1970CrossRefGoogle Scholar
  23. 23).
    R. CAVALIERE, E.C. CICCATTO,B.C. GIOVANELLA, C, HEIDELBERGER,R.O. JOHNSON, M. MARGOTTINI, B. MONDOVI, G. MORICA, A. ROSSI FANELLI:Selective Heat Sensitivity of Cancer Cells. Biochemical and Clinical Studies. Cancer 20: 1351–1381, 1967PubMedCrossRefGoogle Scholar
  24. 24).
    K.G. Hofer, B. B. Izzard, M.G. Hofer:Effect of Lysosomal Modification on the Heat Potentiation of Radiation Damage and Direct Heat Death of BP-8 Sarcom Cella. Eur. J. Cancer 15: 1449–1457, 1979PubMedCrossRefGoogle Scholar
  25. 25).
    S.K. CALDERWOOD,E.A. BUMP, M.A. STEVENSON, R. GONZALES-MENDEZ, E. SHUI, E. VAN KERSEN, G.M. HAHAN:INvestigation of Adenylate Energy Charge, Phosphorylation Potential, and ATP Concentration in Cells Stressed With Starvation and Heat. J. Cell. Physiol. 124: 261–268, 1985CrossRefGoogle Scholar
  26. 26).
    S.H. KIM, J.H. KIM, E.W. HAHN, N.A. ENSIGN: Selective Killing of GLucose and Oxygen Deprived HeLa Cells by Hyperthermia. Cancer Res. 40: 3459–3462, 1980PubMedGoogle Scholar
  27. 27).
    P.N. YI, C.S. CHANG, M. TALLEN, W. BAYER, S. BALL:Hyperthermia induced Intracellular Changes in Tumor Cells. Radia. Res. 93: 534–544, 1983CrossRefGoogle Scholar
  28. 28).
    R.A. COSS, W. C. DEWEY, J.R. BAMBURG: Effect of Hyperthermia on Dividing Chinese Hamster Ovary Cells and on Microtubules in Vitro. Cancer Res. 42: 1059–1071, 1982PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • I. Freitas
    • 1
  • P. Pontiggia
    • 2
  • G. F. Baronzio
    • 2
  • J. R. McLaren
    • 3
  1. 1.Laboratorio di Anatomia ComparataUniversita di PaviaPaviaItaly
  2. 2.Dept. of Hematology OncologyClinica Citta di PaviaPaviaItaly
  3. 3.Emory University School of MedicineAtlantaUSA

Personalised recommendations