Experimental Use of Extensive Pre-Cooling of Subcutaneous Fatty Tissues in Radiofrequency Capacitive Heating

  • G. C. van Rhoon
  • J. van der Zee
  • M. P. Broekmeyer-Reurink
  • P. J. Kansen
  • A. E. M. Kuijs
  • A. G. Visser
  • H. S. Reinhold
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 267)


For regional deep heating a number of non-invasive electromagnetic devices have been developed using either quasi-static or radiative methods to transfer the energy to the patient. They comprise the Annular phased array (AA), capacitive systems, magnetic coils, coaxial — and ridged waveguide systems. Generally the devices with a circumferential E-field are expected to be more favorable to obtain deep heating. However, current experience (1,2,3,7,9,11,12,15,19,20) indicates that there is no system available yet, which is able to induce adequate heating at all tumor locations in depth. Therefore continuation of development and clinical evaluation of the prototype systems is necessary in order to obtain a range of “site specific” hyperthermia systems.


Specific Absorption Rate Capacitor Plate Subcutaneous Fatty Tissue Phantom Thickness Regional Hyperthermia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe M., Hiraoka M., Takahashi M., Egawa S., Matsuda C., Onoyama Y., Morita K., Kakehi M. and Sugahara T., 1986, Multi-institutional studies on hyperthermia using an 8 MHz radiofrequency capacitive heating device (Thermotron RF-8) in combination with radiation for cancer therapy, Cancer 58: 1589–1595.PubMedCrossRefGoogle Scholar
  2. 2.
    Corry, P.M., Jabboury, K., Kong, J.S., Armour, E.P., McCraw, F.J. and Leduc, T., 1988, Evaluation of equipment for hyperthermia treatment of cancer, Int. J. Hyperthermia, 4: 53–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Egawa, S., Tsukiyama, I., Akine, Y., Kajiura, Y., Ogino, T. and Yamshita, K., 1988, Hyperthermic therapy of deep seated tumors: Comparison of the heating efficiencies of an APA and a capacitively coupled RF system, Int. J. Radiation Oncology Biol. Phys., 14: 521–528.CrossRefGoogle Scholar
  4. 4.
    Emami B., Perez C., Nussbaum G. and Leybovich L., 1984, Regional hyperthermia in treatment of recurrent deep-seated tumors: preliminary report, In: Hyperthermic Oncology I, Ed. J. Overgaard, Taylor and Francis, London, 605–608.Google Scholar
  5. 5.
    Fukuhara T., Suzuki Y., Tsutsumi S., Nakajima T., Ito K., Kida A., Fukuda H., Sugimoto K., Izumi A. and Onoyama Y., 1986, Hot-spot in human body during Rth hyperthermic treatment, In: Hyperthermic Oncology Japan, Proc. 3 JSHO, Ed. Y. Onoyama, Mag Bros Inc.: 81.Google Scholar
  6. 6.
    Gibbs F.A., Sapozink M.D., Settles K.S. and Stewart J.R., 1984, Regional hyperthermia with an APA in the experimental treatment of cancer, IEEE Trans. Biomed. Eng. BME-31: 115–119.CrossRefGoogle Scholar
  7. 7.
    Hiraoka M., Jo S., Akuta K., Nishimura Y., Takahashi M. and Abe M., 1987, Radiofrequency capacitive hyperthermia for deep-seated tumors. I. Studies on thermometry, Cancer 60: 121–127.PubMedCrossRefGoogle Scholar
  8. 8.
    Hiraoka M., Jo S., Akuta K., Nishimura Y., Takahashi M. and Abe M., 1987, Radiofrequency capacitive hyperthermia for deep-seated tumors. II. Effects of thermoradiotherapy, Cancer 60: 128–135.PubMedCrossRefGoogle Scholar
  9. 9.
    Howard G.C., Sathiaseelan V., King G.A., Dixon A.K., Anderson A. and Bleehen N.M., 1986, Regional hyperthermia for extensive pelvic tumours using an APA applicator: a feasibility study, Br. J. Radiol. 59: 1195–1201.PubMedCrossRefGoogle Scholar
  10. 10.
    Ishida, T. and Kato, H., 1980, Muscle equivalent agar phantom for 13.56 MHz RF-induced hyperthermia, Shimane J. Med. Sc., 4: 134–140.Google Scholar
  11. 11.
    Issels R.D., Mueller M., Tihing K., Nagele A., Wadepohl M. and Willmans W., 1987, Thermal dose distribution in human pelvic tumours during regional hyperthermia, Int. J. Hyperthermia 3: 570.Google Scholar
  12. 12.
    Kapp D.S., Fessenden P., Samulski T.V., Bagshaw M.A., Cox R.S., Lee E.R., Lohrbach A.W., Meyer J.L. and Prionas S.D., 1988, Stanford University institutional report. Phase I evaluation of equipment for hyperthermic treatment of cancer, Int. J. Hyperthermia 4: 75–115.PubMedCrossRefGoogle Scholar
  13. 13.
    Kato H., Hiraoka M., Nakajima T. and Ishida T., 1985, Deep heating characteristics of an RF capacitive device, Int. J. Hyperthermia 1: 15–28.PubMedCrossRefGoogle Scholar
  14. 14.
    Nishimura Y., Hiraoka M., Jo S., Akuta K., Nagata Y., Takahashi M. and Abe M., 1986, Radiofrequency capacitive hyperthermia combined with radiation for lower abdominal apg pelvic deep-seated tumors, In: Hyperthermic Oncology Japan, Proc. 3 JSHO, Ed. Y. Onoyama, Mag Bros Inc.: 371.Google Scholar
  15. 15.
    Pilepich M.V., Myerson R.J., Emami B.N., Perez C., Leybovich L. and Von Gerichten D., 1987, Regional hyperthermia: a feasibility analysis, Int. J. Hyperthermia 3: 347–351.PubMedCrossRefGoogle Scholar
  16. 16.
    Reddy N.M.S., Maithreyan V., Vasanthan A., Balakrishnan I.S., Bhaskar B.K., Jayaramn R., Shanta V. and Krishnamurthi S., 1987, Local RF capacitive hyperthermia: thermal profiles and tumour response, Int. J. Hyperthermia 3: 379–387.PubMedCrossRefGoogle Scholar
  17. 17.
    Samulski T.V., Kapp D.S., Fessenden P. and Lohrbach A., 1987, Heating deep seated eccentrically located tumors with an APA system: A comparitive clinical study using two annular operating configurations, Int. J. Radiation Oncology Biol. Phys. 13: 83–94.Google Scholar
  18. 18.
    Sapozink, M.D., Gibbs, F.A., Thomson, J.W., Eltringham, J.R. and Stewart, J.R., 1985, A comparison of deep regional hyperthermia from an annular array and a concentric coil in the same patients, Int. J. Radiation Oncology Biol. Phys. 11: 179–190.CrossRefGoogle Scholar
  19. 19.
    Sapozink, M.D., Gibbs, F.A., Gibbs, P. and Stewart, J.R., 1988, Phase I evaluation of hyperthermic equipment-University of Utah Institutional report, Int. J. Hyperther. 4: 117–132.CrossRefGoogle Scholar
  20. 20.
    Shimm, D.S., Cetas, T.C., Oleson, J.R., Cassady, J.R. and Sim, D.A., 1988, Clinical evaluation of hyperthermia equipment: The university of Arizona Institutional report for the NCI hyperthermia equipment evaluation contract, Int. J. Hyperther. 4: 39–51.CrossRefGoogle Scholar
  21. 21.
    Song C.W., Rhee J.G., Lee C.K.K. and Levitt S.H., 1986, Capacitive heating of phantom and human tumors with an 8 MHz radiofrequency applicator, Int. J. Radiation Oncology Biol. Phys. 12: 365–372.CrossRefGoogle Scholar
  22. 22.
    Tachibana S., Ozeki M., Kaito N., Shimomura T., Sobajima T., Tsuji H., Harumari H., Oríno T. and Takeuchi A., 1986, Hyperthermia for lung cancer combined thith conventional therapies, In: Hyperthermic Oncology Japan, Proc. 3 JSHO, Ed. Y. Onoyama, Mag Bros Inc., 333.Google Scholar
  23. 23.
    Van Deursen J.B.P. and Van Rhoon G.C., 1988, A low-cost interface for upgrading an AGA thermograph, Biomed Meas Inform Contr 2: 1013, 1988.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • G. C. van Rhoon
    • 1
  • J. van der Zee
    • 1
  • M. P. Broekmeyer-Reurink
    • 1
  • P. J. Kansen
    • 1
  • A. E. M. Kuijs
    • 1
  • A. G. Visser
    • 1
  • H. S. Reinhold
    • 2
  1. 1.Dr. Daniel den Hoed Cancer CenterRotterdamThe Netherlands
  2. 2.Erasmus UniversityRotterdamThe Netherlands

Personalised recommendations