Advertisement

The Biological Responses to Heat

  • P. Pontiggia
  • J. R. McLaren
  • G. F. Baronzio
  • I. Freitas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 267)

Abstract

The therapeutical application of heat, in any manner obtained (radiofrequency, microwave, ultrasound hyperthermia) , causes progressive physiopathologic modifications to the tumoral mass.These consist in structural damages sufficiently known(18). The heating of a neoplastic mass usually brings about impairments of enzymatic cellular processes, with an increase of oxygen consumption, interesting anoxic or partially anoxic cells.These enzymatic impairments imbalance the normal homeostatic equilibrium, leading to cell. death(55). The thermal washout mechanisms, which protect the normal cells, for certain temperature limits, are missing for the neoplastic cells placed in different environment.The nutritive supply to the tumor microenvironment largely depends on an inefficient and inelastic vascular system (8). The temperature increase, beyond an optimal shoulder, 42.5°C, creates higher oxygen consumption, increase of microsomal activity and of anaerobic glycolysis, leading to two different processes: (A) increased production of lactic acid with consequently pH decrease, (B) a drastic reduction of ATP formation. The reduced availability of energy, due to high temperatures, impairs the enzymatic repair system of tumor DNA molecules.

Keywords

Hypoxic Cell Blood Flow Decrease Tumor Blood Flow MURAMYL Dipeptide Local Hyperthermia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    B.S. Ashby: pH Studiesin Human Malignant Tumors. Lancet, i: 312–315 1966Google Scholar
  2. 2).
    M.E. Begin, U.N. Das, G. Ells, D.F. Horrobin:Selective Killing of Human Cancer Cells by PUFA. Prostaglandins Leukotrienes and Medecine,19:177–186,1985CrossRefGoogle Scholar
  3. 3).
    M.E. Begin, G. Eils, D.F. Horrobin: PUFA and Induced Cytotoxicity Against Tumor Cells and Its Relationship to Lipid Peroxidation. J.N.C.I, 80:188–194,1988Google Scholar
  4. 4).
    C.N. Coleman: Hypoxia in Tumors: A Paradigm For The Approach To Biochemical and Physiologic Heterogeneity. J.N.C.I, 80:310–317, 1988Google Scholar
  5. 5).
    J. Denekamp: Physiological Hypoxia and Cancer Therapy. Aggiornamenti Di Radiobiologia. Vigo Curti Ed.1984Google Scholar
  6. 6).
    M.W. Dewhirst:Will Hyperthermia Conquer The Elusive Hypoxic Cell? Radiology, 137:811–817, 1980PubMedGoogle Scholar
  7. 7).
    J.A. Dickson, S.A. Shah:Immunologic Aspects of Hyperthermia. pp487–543 in “Hyperthermia in Cancer Therapy” K. Storm ed. G.K. Publ. 1983Google Scholar
  8. 8).
    T.E. Dudar, R.K. Jain: Differential Response of. Normal and Tumor Microcirculation to Hyperthermia. Cancer. Res., 44:605–612,1984PubMedGoogle Scholar
  9. 9).
    B. Enami, G.H. Nusshaum, R.K. TenHaken, W.L. Hughes: Response of Capillary Blood Flow and Structure to Local. Tumor Heating. Radioiogy, 137:805–809, 1980Google Scholar
  10. 10).
    R. Engelhardt:Hyperthermia and Drugs. Recent Results in Cancer Research, 104:137–204,1988Google Scholar
  11. 11).
    M. Feldman, L. Ei. senbach:Genes Controlling The Metastatic Phenotype.Cancer Surveys, 7:555–572,1988PubMedGoogle Scholar
  12. 12).
    I. Fidler:Macrophages and Metastasis.A Biological Approach to Cancer Therapy: A Presidential Adress.Cancer. Res, 45:4714–4726,1985PubMedGoogle Scholar
  13. 13).
    A. Floridi, M.G. Poggi, M.I.. Marcante, B. Silvestrini, A. Caputo, C. De Martino: Lonidamine a Selective Inhibitor of Aerobic Glycolysis of Murine Tumor Cells. J.N.C.I., 66:497–499, 1981Google Scholar
  14. 14).
    K.A. Foon:Biological Response Modifiers: The New Immunotherapy. Cancer Res, 49:1621–1639, 1989PubMedGoogle Scholar
  15. 15).
    I. Freitas, P. Pontiggia, S. Barni et al:Histochemical and U1 trastructural Probes for Crhonic Hypoxia. Some Hints for The Chemotaxis of Hypoxic Cells. Submitted for Publ.Google Scholar
  16. J.P. Greenstein:“Biochemistry of Cancer” Academic Press 1955Google Scholar
  17. 17).
    M.M. Guffy, J.A. Rosenberg, Z. Simon, G.P. Burns: Effect of Cellular Fatty Acids Alteration on Hyperthermie Sensitiv ity in Cultured L 1210 Murine Leukemia Cells.Cancer. Res, 42:3625–3630,1982PubMedGoogle Scholar
  18. 18).
    J. Halle, L.R. Roizin-Towle:Biological Effect of Heat.Cancer.Res,44:4708s-4713s,1984Google Scholar
  19. 19).
    G.M. Hahn, I. VonKersen, B. Silvestrini: Inhibition of Recovery from Potentially Lethal. Damage by Lonidamine. Br.J.Cancer, 50:657–660, 1984PubMedCrossRefGoogle Scholar
  20. 20).
    T.S. Herman, B.A. Teicher, M. Jackson, J.Ciark, G. Svensson, C.N. Coleman:Rationale for The Use of Local Hyperthermia with Radiation. Hyperthermia Therapy and Selected Anticancer Drugs in Locally Advanced Human Mal ignancies. Int. J. Hyperthermia,4:143–158,1988PubMedCrossRefGoogle Scholar
  21. 21).
    A.S.A. Hill, J. Denekamp:The Effect of Vascular Occlusion on Thermal. Sensitization of Mouse Tumor Br. J. of Radiology, 51:997–1002,1978Google Scholar
  22. 22).
    S.A. Hill, J. Denekamp:Therapeutic Benefit from Combined Heat and Radiation. Recent: Results in Cancer Research, 109: 28–35, 1988CrossRefGoogle Scholar
  23. 23).
    R.K. Jain:Determinants of Tumor Blood Flow, A Review. Cancer. Res. 48:2641–2658, 1988PubMedGoogle Scholar
  24. 24).
    R.K. Jain, K. Ward-Hartley:Tumor Blood Flow-Characterization Modifications in Hyperthermia. IEE Transactions and Sonic and Ultrasonics, 31:504–526,1984CrossRefGoogle Scholar
  25. 25).
    M. Janak, S. Szmigielski:Alteration of Immune Reactions by Whole Body and Local. Hyperthermia in Normal. and Tumor Bearing animals. Review of Own 1976–1980 Experiments. Br.J.Cancer, 45:122s-126s,1982Google Scholar
  26. 26).
    R.A. Karmali: n-3 Fatty Acids and Cancer. Journal of Internal Medecine, 225:197s-200s,1989CrossRefGoogle Scholar
  27. 27).
    L. Kiremidjian, G. Stotzky:Selenium and Immune Response. Environmental Research, 42:277–303,1987CrossRefGoogle Scholar
  28. 28).
    S.H. Kim, J.H. Kim, E.W. Hahn: Enhanced Killing of Hypoxic Cells by Hyperthermia. Br.J. of. Radiology, 48:872–874,1975CrossRefGoogle Scholar
  29. 29).
    H.G. Klein, S.F. Leitman:Adoptive Immunotherapy in The Treatment of Malignant Disease. Trasfusion,29:170–178,1989CrossRefGoogle Scholar
  30. 30).
    A.W.T. Konings: Membranes as Target for Hyperthermic Cell. Killing.Recent Results In Cancer Research.109:9–22,1988CrossRefGoogle Scholar
  31. 31).
    H.H. LeVeen, P.R. Rajogopalan, I. Vujic, R.P. Gabien, P.H. Brien, R. Hutto, P. Pontiggia, N. D’Ovidio, R. Pethig, D. Armitage: Radiof_requency-Thermotherapy,Local Chemotherapy and Arterial Occlusion in The Treatment of Non Resectable Cancer. The American Surgeon,50:61–65, 1984PubMedGoogle Scholar
  32. 32).
    G.C. Ii: Thermal Biology and Physiologic Clinical Hyperthermia. Current State and Future Needs. Cancer. Res, 44:4886s-4893s, 1984Google Scholar
  33. 33).
    G. Mathe’ et al.: The Effect of Zinc. on Normal and Neoplastic T-Lymphocites Proliferation. Med. Oncol and Tumor PharmacoTher, 2:203–210,1985Google Scholar
  34. 34).
    M. Molls, E. Scherer:The Combination of Hyperthermia and Radiation:Clinical Investigation. Recent Results in Cancer Research, 104: 110–136,1987PubMedCrossRefGoogle Scholar
  35. 35).
    J.E. Moulder, S. Rockwell: Tumor Hypoxia:Its Impact on Cancer Therapy. Cancer Metastasis Reviews, 5:313–341,1987PubMedCrossRefGoogle Scholar
  36. 36).
    C.E. Mountford, L.C. Wright: Organization of Lipids in The Plasma Membranes of malignant and stimulated cells:A New Model. TIBS 13:172–177,1988PubMedGoogle Scholar
  37. 37).
    J.J. Mule’, S. Rosenberg:Immunotherapy with Lymphokines Combination. Important Advances in Cancer and Oncology 1989Google Scholar
  38. 38).
    G.L. Nicolson: Tumor Cell Instability, Diversification and Progression to Metastatic Phenotype:from Oncogene to Oncofetal Expression. Cancer. Res, 47:1473–1487,1987PubMedGoogle Scholar
  39. 39).
    R.K. Oldham: Biotherapy: General Principles. “Principles of Cancer Biotherapy” R.K. Oldham ed. Raven Press.1987Google Scholar
  40. 40).
    M. Onsrud: Effect of Hyperthermia on Human Natural Killer Cells. Recent Results in Cancer Research, 109:50–57,1988PubMedCrossRefGoogle Scholar
  41. 41).
    P. Pontiggia, A. Introzzi: The Therapeutic Enhancement caused by Hyperthermia. Medecine Biologie Environment, 16:499–506,1988Google Scholar
  42. 42).
    P. Pontiggia: Il Dilemma Terapeutico Dei Tumori Maligni. Federazione Medica,4:235–244,1989Google Scholar
  43. 43).
    H.I. Robins, J.S. Slattery, T.A. Lange, M.B. Yatvin: Systemic Lidocaine Enhancement of Hyperthermia-Induced Tumor Regression in Transplantable Murine Tumor Models. Cancer.Res, 43:3187–3191, 1983PubMedGoogle Scholar
  44. 44).
    S. Rockwell: Hypoxic Cells as Target for Cancer Chemotherapy. “Development of Target Oriented Anticancer Drugs” Y.C. Cheng ed. Raven Press 1983Google Scholar
  45. 45).
    H.M. Sinclair: Essential Fatty Acids in Perspective. Human Nutrition. Clinical Nutrition, 386:245–260,1984Google Scholar
  46. 46).
    V. Shapot: Biochemical Aspects of Tumor Growth. MIR Pub1.MOSCOW, pp:44–50,1980Google Scholar
  47. 47).
    C.W. Song, J.J. Clement, S.V. Levitt: Cytotoxic and Radiosensitizing Effects of 5-thio-D-glucose on Hypoxic Cells. Radiology, 123: 201–205, 1977PubMedGoogle Scholar
  48. 48).
    C.W. Song: Effect of Local Hyperthermia on Blood Flow and Microenvironment, a Review. Cancer. Res, 44:4721s-4730s, 1984PubMedGoogle Scholar
  49. 49).
    A.A. Spector, C.P. Burns: Biological. and Therapeutical Potential of Membrane Lipid Modification in Tumors. Cancer. Res,47:4529–4537, 1987PubMedGoogle Scholar
  50. 50).
    A.A. Spector, M.A. Yorek: Membrane Lipid Modification,Composition and Cellular Function, Journal of Lipid Res, 26:1015–1035,1985Google Scholar
  51. 51).
    C. Streffer, D. vanBeuningen: The Biological Basis for Tumor Therapy by Hyperthermia and Radiation. Recent Results in Cancer Research, 104:24–70,1987PubMedCrossRefGoogle Scholar
  52. 52).
    C. Streffer: Metabolic Changes During and after Hyperthermia. Int. Journal of Hyperthermia,1:305–319,1985CrossRefGoogle Scholar
  53. 53).
    C.D. Stubbs, A.R. Smith: The Modification of Mammalian Membrane PUFA Composition in Relation To Membrane Fluidity and Function. Biochimica et Biophysica Acta, 779:89–137,1984PubMedGoogle Scholar
  54. 54).
    S. Szmigielski, S. Zaboklicki, J. Gil, J. Jeljaszewicz, G. Pulverez: Inhibition of Lewis Lung carcinoma in Mice by Local Microwawe Hyperthermia Combined with Immunomodulating Propionibacterium Granulosum KP45. Cancer Immunology Immunotherapy,16:151–156,1984CrossRefGoogle Scholar
  55. 55).
    P. Vaupel, F. Kallinowski: Physiological Effects of Hyperthermia. Recent Results in Cancer Res, 104:71–110,1987CrossRefGoogle Scholar
  56. 56).
    J. Wagstaff, M. Kees: Lymphokines and Cytokines. Cancer Chemotherapy and Biological Response Modifiers. Annual 10 H.M. Pinedo, D.L. Longo, B.A. Chabner ed. Elsevier 1988.Google Scholar
  57. 57).
    S.P. YARMONENKO: RADIOBIOLOGY of Humans and Animals. MIR Pub: MOSCOW, pp:362–366, 1988.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • P. Pontiggia
    • 1
  • J. R. McLaren
    • 2
  • G. F. Baronzio
    • 1
  • I. Freitas
    • 3
  1. 1.DPT.of Hematology OncologyClinica Citta di PaviaPaviaItaly
  2. 2.Emory University School of MedicineAtlantaUSA
  3. 3.Laboratorio di Anatomia ComparataUniversita’di PaviaPaviaItaly

Personalised recommendations