Spin Density Waves in Organic Conductors

  • Kazumi Maki
Part of the NATO ASI Series book series (NSSB, volume 218)


In the following we discuss two aspects of the spin density wave (SDW) state in organic conductors like TMTSF salts (Bechgaard salts) and DMET salts at low temperatures. As a model we take an anisotropic Hubbard model and we study the properties of the model within mean field theory. In the first part we describe the collective transport associated with the sliding motion of the SDW (the Fröhlich conduction), which shares a number of similarities with the related transport in the charge density wave. So far only a few experiments have been reported on the Fröhich conduction in the SDW. But these results are quite encouraging. In the second part we describe the field induced spin density wave (FISDW) in the related systems, which appears only in a strong magnetic field (H>4T) normal to the best conducting plane. The same model describes semi-quantitatively the observed phase diagram and other properties for H ≦ 8T, while the theory appears to fail mysteriously to describe a class of observed phenomena beyond H = 8T.


Sound Velocity Charge Density Wave Quantum Hall Effect Spin Density Wave Organic Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.A. Little, Phys, Rev. A134 1416 (1964)ADSGoogle Scholar
  2. 2.
    For an overview on these systems see: Proceeding of the international conference on Science and Technology of Synthetic metals. Santa Fe. June 26 – July 2, 1988 in Synthetic Metals 27 (1988)- 29 (1989)Google Scholar
  3. 3.
    D. Jérome and H. Schulz, Adv. in Physics 31 299 (1982); D. Jerome, F. Creuzet and C. Bourbonnais, Phys. Scripta T27 130 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    K. Yamaji, J. Phys. Soc. Jpn 51 2787 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    K. Maki and A. Virosztek, Phys: Rev. B (to be published)Google Scholar
  6. 6.
    H. Hasegawa and H. Fukuyama, J. Phys. Soc. Jpn 55 3978 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    K. Yamaji, J. Phys. Soc. Jpn 52 1361 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    P.A. Lee, M.T. Rice and P.W. Anderson, Sol. Stat. Commun. 14 703 (1974)ADSCrossRefGoogle Scholar
  9. 9.
    A. Yirosztek and K. Maki, Phys. Rev B 27 2028 (1988)CrossRefGoogle Scholar
  10. 10.
    I. Tüttö and A. Zawadowski, Phys. Rev. Lett 60 1442 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    S.A. Brazovskii and I.E. Dzyaloshinskii, Soviet-Phys. JETP 44 1233 (1976)ADSGoogle Scholar
  12. 12.
    see for example H. Fukuyama and H. Takayama in “Electronic Properties of Inorganic Quasi-One Dimensional Materials, I p41, edited by P. Monceau (Reidel, Dordrecht 1985) and K. Maki, ibid p125.Google Scholar
  13. 13.
    S. Tomić, J.R. Cooper, D. Jérome, and K. Bechgaard, Phys. Rev. Lett 62 2446 (1989)Google Scholar
  14. 14.
    K. Maki and A. Virosztek, Phys. Rev. B 39 9640 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    For general reviews see P. Monceau in “Electronic Properties of In organic Quasi-One Dimensional Material II. p 139 Edited by P. Monceau (Reidel, Dordrecht 1985); G. Grüner and A. Zettl, Phys. Rep 119 117 (1989)Google Scholar
  16. 16.
    H. Fukuyama and P.A. Lee, Phys. Rev. B17 535 (1978)ADSCrossRefGoogle Scholar
  17. 17.
    P.A. Lee and T.M. Rice, Phys. Rev. B19 3970 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    K. Maki and A. Virosztek, Phys. Rev. B39 2511 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    S. Takada, J. Phys. Soc, Jpn 53 2193 (1984)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    J.W. Brill and W. Roark, Phys. Rev. Lett 53 846 (1984); J.W. Brill, W. Roark and G. Minton, Phys. Rev. B33 6831(1986)ADSCrossRefGoogle Scholar
  21. 21.
    G. Mozurkewich, P.M. Chaikin, W.G. Clark, and G. Grüner, Sol. State Commun 56 421 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    K. Maki and A. Virosztek, Phys. Rev B36 2910 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    P.M. Chaikin, T. Tiedje, an A.N. Bloch, Sol. State Commun 41 739 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    X.D. Xiang and J.W. Brill, Phys. Rev. B36 2969 (1987)ADSCrossRefGoogle Scholar
  25. 25.
    X.D. Xiang and J.W. Brill, Phys. Rev. B39 1290 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    A. Virosztek and K. Maki, Phys. Rev (submitted)Google Scholar
  27. 27.
    Y. Nakane and S. Takada, J. Phys. Soc. Jpn 54 977 (1985)ADSCrossRefGoogle Scholar
  28. 28.
    J.F. Kwak, J.E. Schirber, R.L. Greene, and E.M. Engler, Phys. Rev. Lett. 46 1296 (1981); J.F. Kwak, Mol. Cryst. Liq. Cryst. 79 111 (1982)ADSCrossRefGoogle Scholar
  29. 29.
    P.M. Chaikin, M.-Y. Choi, J.F. Kwak, J.S. Brooks, K.P. Martin, M.J. Naughton, E.M. Engler, and R.L. Greene, Phys. Rev. Lett. 51 2333 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    M. Ribault, D. Jérome, J. Tuchendler, C. Weyl and K. Bechgaard, J. Phys Lett (Paris) 44 L 953 (1983)CrossRefGoogle Scholar
  31. 31.
    K. Oshima, M. Suzuki, K. Kikuchi, K. Kuroda, I. Ikemoto, and K. Kobayashi, J. Phys. Soc Jpn 53 3295 (1984)ADSCrossRefGoogle Scholar
  32. 32.
    M. Ribault, J. Cooper, D. Jerome, D. Mailly, A. Moradpour, and K. Bechgaard, J. Phys. Lett. (Paris) 45, L 935 (1984)Google Scholar
  33. 33.
    M. Ribault, Mol. Cryst. Liq. Cryst. 119 91 (1985)CrossRefGoogle Scholar
  34. 34.
    R. V. Chamberlin, M.J. Naughton, X. Yan, L.Y. Chiang, S.Y. Hsu and P.M. Chaikin, Phys. Rev. Lett. 60 1189 (1988)ADSCrossRefGoogle Scholar
  35. 35.
    F. Pesty, P. Garoche and K. Bechgaard, Phys. Rev, Lett. 55 2495 (1985); P. Garoche and F. Pesty, J. Magn, Magn. Mater 54–57 1418 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    M.J. Naughton, J.S. Brooks, L.Y. Chiang, R.V. Chamberlin, and P.M. Chaikin, Phys. Rev. Lett 55 969 (1985); M.J. Naughton, R.V. Chamberlin, X. Yan, S.Y. Hsu, L.Y. Chiang, M.Ya Azbel and P.M. Chaikin, Phys. Rev. Lett 61 621 (1988)ADSCrossRefGoogle Scholar
  37. 37.
    S.T. Hannahs, J.S. Brooks, P.M. Chaikin, L.Y. Chiang, X. Yan, W. Kang and S.H. Bloom, Bull. Ameri Phys. Soc. 34 740 (1989)Google Scholar
  38. 38.
    T. Osada, N. Miura and G. Saito, Physica 143 B 403 (1986)Google Scholar
  39. 39.
    K. Maki, Phys. Rev. B33 4826 (1986); A. Virosztek, L. Chen and K. Maki, Phys. Rev. B34 3371 (1986)ADSCrossRefGoogle Scholar
  40. 40.
    L.P. Gor’kov and A.G. Lebed, J. Phys. Lett (Paris) 45 433 (1984)Google Scholar
  41. 41.
    M. Héritier, G. Montambaux and P. Lederer, J. Phys. Lett (Paris) 45 L943 (1984)Google Scholar
  42. 42.
    K. Yamaji; J. Phys. Soc. Jpn 54 1034(1985); Synth. Met. 13 29 (1986)ADSCrossRefGoogle Scholar
  43. 43.
    D. Poilblanc, M. Héritier, G. Montambaux, and P. Lederer, J. Phys. C 19 L321 (1986)ADSCrossRefGoogle Scholar
  44. 44.
    K. Maki and A. Virosztek, Phys. Rev. B38 2691 (1988)ADSCrossRefGoogle Scholar
  45. 45.
    D. Poilblanc, G Montambaux, M. Héritier, and P. Lederer, Phys. Rev. Lett. 60 1189 (1988); M. Ya Azbel, P. Bak and P.M. Chaikin, ibid 59 926 (1987)CrossRefGoogle Scholar
  46. 46.
    A. Virosztek and K. Maki, Phys. Rev. B39 616 (1989)ADSCrossRefGoogle Scholar
  47. 47.
    J.R. Cooper, M. Miljak, G. Delpanque, D. Jérome, M. Weger, J.M. Fabre, and L. Giral, J. Phys. (Paris) 38 1097(1977)CrossRefGoogle Scholar
  48. 48.
    T. Osada, N. Miura, I. Oguro and G. Saito, Phys. Rev. Lett 58 1563 (1987)ADSCrossRefGoogle Scholar
  49. 49.
    A. Fournel, J.P. Sorbrier, M. Konczykowski and P. Monceau, Phys. Rev. Lett. 57 2199 (1986)ADSCrossRefGoogle Scholar
  50. 50.
    T. Ekino and J. Akimitsu, Jpn, J of Apl. Phys. suppl 26 625 (1987)Google Scholar
  51. 51.
    X.Z. Huang and K. Maki, Phys. Rev. B 40 2575 (1989)ADSCrossRefGoogle Scholar
  52. 52.
    A. Briggs, P. Monceau, M. Nuñez-Requeiro, J. Peyrard, M. Ribault and J. Richard, J. Phys. C 13 2117 (1980)ADSCrossRefGoogle Scholar
  53. 53.
    T.W. Kira, J.P. Carini, G. Grüner, K. Maki and F. Wudl, Phys. Rev. B (submitted)Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Kazumi Maki
    • 1
  1. 1.Department of PhysicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations