Advertisement

Vortex Dynamics in Networks of Josephson Junctions

  • Ulrich Eckern
Part of the NATO ASI Series book series (NSSB, volume 218)

Abstract

Since the proposal by Josephson1 in 1962 that a tunnel Junction, i.e. two superconductors weakly coupled through an oxide barrier, should show a zero-voltage supercurrent due to the tunneling of Cooper pairs, this system has been studied with unending enthusiasm. In particular, initiated by Leggett,2 the last decade has seen a remarkable activity in a field which is often called Quantum Mechanics of Macroscopic Variables;3 experiments on small Josephson junctions at low temperature are found to be in excellent agreement with theoretical predictions.

Keywords

Continuum Limit Josephson Junction Tunnel Junction Adiabatic Limit External Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. D. Josephson, Phys. Letters 1, 251 (1962); Advan. Phys. 14, 419 (1965).ADSMATHCrossRefGoogle Scholar
  2. 2.
    A. J. Leggett, Suppl. Progr. Theor. Phys. 69, 80 (1980).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    For a recent review and further references, see: A. J. Leggett, Jap. J. Appl. Phys. 26, Suppl. 26–3, 1986 (1987).Google Scholar
  4. 4.
    P. W. Anderson, in Lectures on the Many Body Problem, edited by E. R. Caianiello (Academic, New York, 1964), Vol. 2, p. 113.Google Scholar
  5. 5.
    L. J. Geerligs, M. Peters, L. E. M. de Groot, A. Verbruggen, and J. E. Mooij, Phys. Rev. Lett. 63, 326 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).MATHGoogle Scholar
  7. 7.
    A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981); Ann. Phys. (N. Y.) 149, 374 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    V. Ambegaokar, U. Eckern, and G. Schön, Phys. Rev. Lett. 48, 1745 (1982); Phys. Rev. B 30, 6419 (1984); A. I. Larkin and Yu. N. Ovchinnikov, Phys. Rev. B 28, 6281 (1983).ADSCrossRefGoogle Scholar
  9. 9.
    F. Guinea and G. Schön, Europhys. Lett. 1, 585 (1986); J. Low Temp. Phys. 69, 219 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    For a recent review see, for example: U. Eckern and G. Schön, in Festkörperprobleme /Advances in Solid State Physics, edited by U. Rössler (Vieweg, Braunschweig, 1989), Vol. 29, p. 1.Google Scholar
  11. 11.
    V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 61, 1144 (1972) [Sov. Phys. JETP 34, 610 (1972)]; J. M. Kosterlitz and D. J. Thouless, J. Phys. C 5, L124 (1972); 6, 1181 (1973).Google Scholar
  12. 12.
    U. Eckern and A. Schmid, Phys. Rev. B 39, 6441 (1989); see also Ref. 13.ADSCrossRefGoogle Scholar
  13. 13.
    A. I. Larkin, Yu. N. Ovchinnikov, and A. Schmid, Physica B 152, 266 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    Compare Eq. (2.4) of Ref. 12.Google Scholar
  15. 15.
    Y. B. Kim and M. J. Stephen, in Superconductivity, edited by R. D. Parks (Dekker, New York, 1969), Vol. 2, p. 1107; W. F. Vinen, ibid. p. 1167.Google Scholar
  16. 16.
    V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics (Reidel, Boston, 1983), Sec. 21.MATHCrossRefGoogle Scholar
  17. 17.
    S. R. Shenoy, Phys. Rev. B (1989), to be published.Google Scholar
  18. 18.
    V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia, Phys. Rev. B 21, 1806 (1980).ADSCrossRefGoogle Scholar
  19. 19.
    J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197 (1965).ADSCrossRefGoogle Scholar
  20. 20.
    M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975), Sec. 5.Google Scholar
  21. 21.
    P. Nozières and W. F. Vinen, Philos. Mag. 14, 667 (1966).ADSCrossRefGoogle Scholar
  22. 22.
    J. Bardeen and R. D. Sherman, Phys. Rev. B 12, 2634 (1975).ADSCrossRefGoogle Scholar
  23. 23.
    A. Schmid and W. Hauger, J. Low Temp. Phys. 11, 667 (1973).ADSCrossRefGoogle Scholar
  24. 24.
    See, for example: A. Schmid, Phys. Kondens. Materie 5, 302 (1966); A. I. Larkin and Yu. N. Ovchinnikov, Pis’ma Zh. Eksp. Teor. Fiz. 23, 210 (1976) [JETP Lett. 23, 187 (1976)]; Zh. Eksp. Teor. Fiz. 73, 299 (1977) [Sov. Phys. JETP 46, 155 (1977)].ADSCrossRefGoogle Scholar
  25. 25.
    L. Jacobs, J. V. José, M. A. Novotny, and A. M. Goldman, Phys. Rev. B 38, 4562 (1988); L. Jacobs and J. V. José, Physica B 152, 148 (1988); J. Choi and J. V. José, Phys. Rev. Lett. 62, 1904 (1989).ADSCrossRefGoogle Scholar
  26. 26.
    S. Chakravarty, S. Kivelson, G. T. Zimanyi, and B. I. Halperin, Phys. Rev. B 35, 7256 (1986); R. A. Ferrell and B. Mirhashem, ibid. 37, 648 (1988); S. E. Korshunov, Europhys. Lett. 9, 107 (1989); W. Zwerger, ibid. 9, 421 (1989).ADSCrossRefGoogle Scholar
  27. 27.
    B. G. Orr, H. M. Jaeger, A. M. Goldman, and C. G. Kuper, Phys. Rev. Lett. 56, 378 (1986); H. M. Jaeger, D. B. Haviland, A. M. Goldman, and B. G. Orr, Phys. Rev. B 34, 4920 (1986).ADSCrossRefGoogle Scholar
  28. 28.
    D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Ulrich Eckern
    • 1
  1. 1.Institut für Theorie der Kondensierten MaterieUniversität KarlsruheKarlsruheFederal Republic of Germany

Personalised recommendations