Quantum Monte Carlo Methods

  • M. Dzierzawa
  • X. Zotos
Part of the NATO ASI Series book series (NSSB, volume 218)


In the previous section we discussed exact diagonalization studies and concluded that the size of the systems that can be studied are rather limited while complete information on the system can be obtained and the complexity of the Hamiltonian poses no extra problems. A complementary method is the Quantum Monte Carlo method which allows the study of much larger systems (of the order of hundred sites) although the information obtained is more limited and the Hamiltonians so far studied simpler. There is an abundance of methods that have been developed for fermion and spin systems1; here we will only describe two methods, the first because it seems to be the most flexible and presently widely used2–4, the second because it is very recent and the experience on it rather limited5. For the interested reader a very complete technical account of both methods has recently been presented6.


Partition Function Projection Method Time Slice Trial Function Monte Carlo Sampling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Quantum Monte Carlo Methods, edited by M. Suzuki (Springer-Verlag 1987); D.J. Scalapino, Frontiers and Borderlines in Many-Particle Physics (1988); J.E. Hirsch, R.L. Sugar, D.J. Scalapino, R. Blankenbecler, Phys. Rev. B26, 5033 (1982); D. Kung, D. Dahl, R. Blankenbecler, R. Deza, J.R. Fulco, Phys. Rev. B32, 2022 (1985)Google Scholar
  2. 2.
    R. Blankenbecler, D.J. Scalapino, R.L. Sugar, Phys. Rev. D24, 2278 (1981)ADSGoogle Scholar
  3. 3.
    J.E. Hirsch, Phys. Rev. B28, 4059 (1983)ADSGoogle Scholar
  4. 4.
    J.E. Hirsch, Phys. Rev. B31, 4403 (1985); J.E. Hirsch, H.Q. Lin, Phys. Rev. B37, 5070 (1988)ADSGoogle Scholar
  5. 5.
    S. Sorella, E. Tosatti, S. Baroni, R.Car, M. Parrinelo, Modern Phys. B1, 993 (1988); S. Sorella, S. Baroni, R. Car, M. Parinello, Europhys. Lett. 8, 663 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    E.Y. Loh Jr., J.E. Gubernatis, in ”Electrons Phase Transitions”, ed. W. Hauke, Y.V. Kopaev, North Holland Physics (Elsevier, N.Y.,1990); S.R. White, D.J. Scalapino, R.L. Sugar, E.Y. Loh, J.E. Gubernatis, R.T. Scalettar, Phys. Rev. B40, 506 (1989).Google Scholar
  7. 7.
    G. Parisi, Nucl. Phys. B180, 378 (1981)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    K.Binder: in Monte Carlo Methods in Statistical Physics, ed. by K. Binder Topics in Current Physics, vol. 7 (Springer Verlag, New York, 1979)Google Scholar
  9. 9.
    S.R. White, J.W. Wilkins, Phys. Rev. B37, 5024 (1988)ADSGoogle Scholar
  10. 10.
    M. Cyrot, Journal de Phys. 33, 125 (1972); E.N. Economou, C.T. White, R.R. DeMarco, Phys. Rev. 18, 3946 (1978)CrossRefGoogle Scholar
  11. 11.
    R.T. Scalettar, D.J. Scalapino, R.L. Sugar, D. Toussaint, Phys. Rev. B36, 8632 (1987); M. Imada, J. Phys. Soc. Jpn. 57, 2689 (1988).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. Dzierzawa
    • 1
  • X. Zotos
    • 1
  1. 1.Institut für Theorie der Kondensierten MaterieUniversität KarlsruheKarlsruheGermany

Personalised recommendations