Exact Diagonalization of Small Systems

  • X. Zotos
Part of the NATO ASI Series book series (NSSB, volume 218)


In recent years numerical simulations have been increasingly used in the study of models describing strongly interacting systems. In particular after the discovery of high temperature superconductivity and the realization that it involves strongly interacting fermions a great deal of work appeared in the literature either on exact diagonalization studies or Quantum Monte Carlo studies on systems like the tJ model1, Hubbard model2 or more complicated models involving several bands3. In these two lectures we will attempt to give an impression about the systems that can be studied using exact diagonalization techniques and which using Monte Carlo methods, the limitations of each method and a guide to the main literature without attempting to give an exhaustive reference list in this rapidly developing field.


High Temperature Superconductivity Infinite System Translation Operator Exact Diagonalization Diagonalization Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. Zotos, Phys. Rev. B37, 5594 (1988); E.Y. Loh, T. Martin, P. Prelovsek, D.K. Campbell, Phys. Rev. B38, 2494 (1988); S.A. Trugman, Phys. Rev. 37, 1597 (1988) and present volume; Y. Hatsugai, M. Imada, N. Nagaosa, preprint; J. Bonca, P. Prelovsek, I. Sega, Phys. Rev. B39, 7074 (1989); A. Mistriotis, H. Büttner, W. Pesch, J. Phys. CL 1021, (1988); E. Dagotto, A. Moreo, R. Joynt, S. Bacci, E. Gagliano, preprint; P. Horsch, W. Stephan, M. Ziegler, K. von Szczepanski, preprintGoogle Scholar
  2. 2.
    H.Q. Lin, J. Hirsch, D.J. Scalapino, Phys. Rev. 37, 7359 (1988), J.A. Riera, A.P. Young, preprintADSCrossRefGoogle Scholar
  3. 3.
    J.E. Hirsch, S. Tang, E. Loh, D.J. Scalapino, Phys. Rev. Lett. 60, 1668 (1988); W.H. Stephan, W.v.d. Linden, P. Horsch, preprintADSCrossRefGoogle Scholar
  4. 4.
    F.D.M. Haidane, in The Quantum Hall Effect edited by R.E. Prange and S.M. Girvin (Springer-Verlag, New York,1986)Google Scholar
  5. 5.
    J. Oitmaa, D.D. Betts, Can. J. Phys. 56, 897 (1978); J. Borysowicz, T.A. Kaplan, P. Horsch, Phys. rev. B31, 1590 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)ADSCrossRefGoogle Scholar
  7. 7.
    H. Shiba, Prog. Theor. Phys. 48, 2171 (1972)ADSCrossRefGoogle Scholar
  8. 8.
    P. Maldague, Phys. Rev. B16, 2437 (1977); A.M. Oles, G. Treglia, D.Spanjaard, R. Jullien, Phys. Rev. B32, 2167 (1985); E.Y. Loh, D.K. Campbell Synth. Metals 27, A499 (1988); R. Haydock, V. Heine, M.J. Kelly in Solid State Physics, vol. 35, ed. by H. Ehrenreich, F. Seitz, D. Turnbull, (Academic, N.Y., 1980); O. Gunnarson, K. Schönhammer, Phys. Rev. B31, 4815 (1985); C.A. Balseiro, A.G. Rojo, E.R. Gagliano, B. Alascio, Phys. Rev. B38, 9315 (1988)ADSGoogle Scholar
  9. 9.
    X. Zotos, F. Pelzer, Phys. Rev.B37, 5045 (1988)ADSGoogle Scholar
  10. 10.
    B.T. Smith, Matrix Eigensystem Routines-EISPACK Guide, Lect. Notes in Computer Science, Springer-Verlag (1976)Google Scholar
  11. 11.
    G. Cisneros, C.F. Bunge, Comput. Chem. 8, 157 (1984); J. Weber, R. Lacroix, G. Wanner, Comp. & Chem. 4, 55 (1980)CrossRefGoogle Scholar
  12. 12.
    H.H. Roomany, H.W. Wyld, L.E. Holloway, Phys. Rev. D21, 1557 (1980); E. Dagotto, A. Moreo, Phys. Rev. D31, 865 (1985)MathSciNetADSGoogle Scholar
  13. 13.
    G. Spronken, R. Jullien, M. Avignon, Phys. Rev. B24, 5356 (1981); L. Sneddon, J. Phys. C11, 2823 (1978); B. Fourcade, G. Spronken, Phys. Rev. B29, 5012 (1984)ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • X. Zotos
    • 1
  1. 1.Institut für Theorie der Kondensierten MaterieUniversität KarlsruheKarlsruheGermany

Personalised recommendations