Advertisement

Chaos and Turbulence

  • Tomas Bohr
Part of the NATO ASI Series book series (NSSB, volume 218)

Abstract

The lecture notes presented here are an attempt at giving a coherent introduction to some concepts which are not usually presented together. “Low dimensional chaos” is, despite its recent absorption into the physics community, becoming a reasonably mature subject. At least one now knows practical ways of quantifying “chaos”, one has an understanding of the underlying fractal geometry and for certain special cases one even has strong theoretical results. Turbulence, on the other hand, is an extremely ramified subject and, especially from the experimental side, rather well-studied, largely because of its many technical applications from refrigerators to airplanes. In these lectures the word “turbulence” will be used in a rather general sense, not limited to the motion of fluids. We shall use it to describe motion which is irregular both in space and time as distinguished from the word “chaos” which is usually used about the irregular temporal motion of a single (or a few) variables. This means that we can talk about turbulence in chemical reactions, dynamical interphases and many other nonhydrodynamical situations.

Keywords

Fractal Dimension Lyapunov Exponent Chaotic Motion Turbulent State Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Hénon, Comm.Math.Phys. 50,69(1976)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    J.-P.Eckmann and D.Ruelle, Rev.Mod.Phys. 67, 617 (1985).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    D.A.Russel, J.D.Hanson and E.Ott, Phys.Rev.Lett. 45, 1175 (1980).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    B.B.Mandelbrot, “The Fractal Geometry of Nature” (Freeman 1982).Google Scholar
  5. 5.
    J.L.Kaplan and J.A.Yorke, Comm.Math.Phys. 67, 93 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    P.Cvitanović, Phys.Rev.Lett. 61, 2729 (1988).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    P.Collet and J.-P.Eckmann, “Iterated Maps on the Interval as Dynamical Systems” (Birkhauser 1980).Google Scholar
  8. 8.
    P.Cvitanović, ed. “Universality in Chaos” (Adam Hilger 1984).Google Scholar
  9. 9.
    M.J.Feigenbaum, J.StatPhys. 19, 25 (1978) and 21, 669 (1979),MathSciNetADSMATHGoogle Scholar
  10. 10.
    McKay, Meiss and Percival.Google Scholar
  11. 11.
    D.Ruelle and F.Takens, Comm.Math.Phys. 20, 167 and 21, 21 (1971).Google Scholar
  12. 12.
    T.Bohr, G.Grinstein, Yu He and C.Jayaprakash, Phys.Rev.Lett. 58, 2155 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    J.W.Elder, J.Fluid Mech. 9, 235 (1960).ADSMATHCrossRefGoogle Scholar
  14. 14.
    D.J.Tritton, “Physical Fluid Dynamics” (Van Nostrand Reinhold 1977).Google Scholar
  15. 15.
    A.N.Zaikin and A.M.Zhabotinsky, Nature 225, 535 (1970).ADSCrossRefGoogle Scholar
  16. 16.
    M.van Dyke, “An Album of Fluid Mechanics” (The Parabolic Press 1982).Google Scholar
  17. 17.
    K.R.Sreenivasan and C.Meneveau, J.Fluid Mech. 173, 357 (1986). C.Meneveau and K.R.Sreenivasan in “CHAOS ’87” ed. M.Duong-van (Nucl.Phys. B 2, 49 (1987).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    G.Paladin and A.Vulpiani, Phys.Rep. 156, 147 (1987).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    J.P.Crutchfield and K.Kaneko, “Phenomenology of Spatio-Temporal Chaos” in “Directions in Chaos” vol.1, ed. Hao Bai-Lin (World Scientific 1987).Google Scholar
  20. 20.
    H.Chaté and P.Manneville, “Spatio-temporal Intermittency in Coupled Map Lattices”, Physica D 32, 409(1988).MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    K.Kaneko, Physica D to appear.Google Scholar
  22. 22.
    K.Kaneko, Prog.Theor.Phys. 74, 1033 (1985).ADSMATHCrossRefGoogle Scholar
  23. 23.
    T.Bohr and D.Rand, Physica 25D, 387 (1987).MathSciNetADSGoogle Scholar
  24. 24.
    K.Kaneko and J.P.Crutchfield, Phys.Rev.Lett. 60, 2715 (1988).MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    T.Bohr and O.B.Christensen, Phys.Rev.Lett., to be published.Google Scholar
  26. 26.
    T.Yamada and H.Fujisaka, Prog.Theor.Phys. 72 (1984)Google Scholar
  27. 27.
    S.P.Kuznetsov and A.S.Pikovsky, Physica 19 D, 384 (1986). A.S.Pikovsky, Z. Phys. B 55,149 (1984).MathSciNetMATHGoogle Scholar
  28. 28.
    F.Kaspar and H.G.Schuster, Phys.Lett. A 113, 451 (1986).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Note that small wavelength instabilities can occur if ε becomes too large. It is easy to check that \(\mid 1-{\varepsilon}+{\varepsilon\over 2}(\cos q_1+\cos q_2)\mid\leq 1\) for all q 1, q 2 as long as 0≤ε≤l. For ε> l the “staggered” state with q 1=q 2=π becomes unstable.Google Scholar
  30. 30.
    O.B.Christensen, “Spatial Correlations in Coupled Map Lattices”, Thesis, University of Copenhagen (1987). Unpublished.Google Scholar
  31. 31.
    R.Deissler and K.Kaneko, Phys.Lett. A 119 (1987).Google Scholar
  32. 32.
    T.Bohr and D.Rand, sumitted to Physica D.Google Scholar
  33. 33.
    G.Nicolis and I.Prigogine, “Self-organization in Non-equilibrium systems” (Wiley 1977).Google Scholar
  34. 34.
    H.Haken, “Synergetics” (Sprnger 1977).Google Scholar
  35. 35.
    J.-C.Roux, R.H.Simonyi and H.L.Swinney, Physica D 8, 257 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    A.T.Winfree, “The Geometry of Biological Time” (Springer 1980).Google Scholar
  37. 37.
    Y.Kuramoto, Chemical Oscillations, Waves and Turbulence Springer, Berlin (1980)Google Scholar
  38. 38.
    A.V.Gaponov-Grekhov and M.I.Rabinovich, Sov.Phys.Usp. 30, 433 (1987). A.V.Gaponov-Grekhov, A.S.Lomov, G.V.Osipov and M.I.Rabinovich, “Pattern formation and dynamics of two-dimensional structures in nonequilibrium dissipative media”. Gorky preprint (1988).MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    P.Coullet, L.Gil and J.Lega, Phys.Rev. Lett. 62, 1619 (1989).ADSCrossRefGoogle Scholar
  40. 40.
    T.Bohr, M.H.Jensen, A.W. Pedersen and D.Rand, to appear in “New Trends in Nonlinear Dynamics and Pattern Forming Phenomena” ed. P.Coullet and P.Huerre (Plenum 1989).Google Scholar
  41. 41.
    T.Bohr, M.H.Jensen and A.W. Pedersen:“Transition to turbulence in a discrete complex Ginzburg-Landau model”, preprint (1989).Google Scholar
  42. 42.
    A.C.Newell and J.A.Whitehead, J.Fluid Mechanics 38, 279 (1969); A.C.Newell in Lectures in Applied Mathematics, vol. 15, Am. Math. Society, Providence (1974).ADSMATHCrossRefGoogle Scholar
  43. 43.
    See e.g. J.M.Kosterlitz in “Nonlinear Phenomena at Phase Transitions and Instabilities” ed. T.Riste (Plenum 1982) p.397, or D.R.Nelson in “Phase Transitions and Critical Phenomena” vol. 7 ed. C.Domb and J.L.Lebowitz (Academic Press 1983) p.l.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Tomas Bohr
    • 1
  1. 1.The Niels Bohr InstituteCopenhagenDenmark

Personalised recommendations