Plant Aging pp 319-324 | Cite as

Biotechnology in Forest Tree Improvement: Trees of the Future

  • Jochen Kleinschmit
  • Andreas Meier-Dinkel
Part of the NATO ASI Series book series (NSSA, volume 186)


Forest tree improvement has to handle long living organisms which start flowering late and which grow in a heterogeneous environment. In modern tree improvement programs, two main aims have to be fulfilled:
  • Conservation of the genetic variation of the species under consideration for future needs and as a measure of protection of natural resources.

  • Improvement of economic important characteristics of the trees to fit better to human needs. In face of the growing world population and the depletion of natural resources this is especially true for production characteristics.


Somatic Embryogenesis Forest Tree Tree Improvement Forest Tree Species Tree Breeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahuja, M.R., 1986, Application of biotechnology to forest tree species and problems involved. Proceed. IUFRO Joint Meeting of WP S 2.04–05 and S 2.03–14. Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft, Hamburg, No. 154: 187–199.Google Scholar
  2. Bajaj, Y.P.S., 1986, Biotechnology in Agriculture and Forestry. Springer Verl. Berlin/Heidelberg/New York/Tokyo (Vol. I): VII.Google Scholar
  3. Bonga, I.M. and Durzan, D.I., 1987, Cell and Tissue Culture in Forestry. Martinus Nilhoff Publishers. Vol. 1.Google Scholar
  4. Dambroth, M., 1985, Biotechnology in der Pflanzenzüchtung. HG.-Post, 3: 8–13Google Scholar
  5. Dunstan, D.I., 1988, Prospects and progress in conifer biotechnology. Canad. Journ. For. Res., 18: 1497–1506.CrossRefGoogle Scholar
  6. Durzan, D.J., 1985, Biotechnology and the cell cultures of woody perennials. Forestry Chronicle: 439–447.Google Scholar
  7. Jörgensen, J., 1988, Embryogenesis in Quercus petraea and Fagus sylvatica. J. Plant Physiology, 132: 638–640.CrossRefGoogle Scholar
  8. Jörgensen, J., 1989, Somatic embryogenesis in Aesculus hippocastanum L. by culture of filament callus, J. Plant Physiol, (submitted).Google Scholar
  9. Kleinschmit, J., Hoffmann, D., Meier-Dinkel, A., Jörgensen, J., 1988, Biotechnologische Verfahren bei Generhaltung und Züchtung von Waldbaumarten. BioEngineering, 3: 236–239.Google Scholar
  10. Libby, W.J., Brown, A.G. and Fielding, I.M., 1972, Effects of hedging Radiata pine on production, rooting and early growth of cuttings. New Zealand Journ. For. Sci., 2: 263–283.Google Scholar
  11. Mackay, J., Séguin, A. and Lalonde, M., 1988, Genetic transformation of 9 in vitro clones of Alnus and Betula by Agrobacterium tumefaciens. Plant Cell Reports, 7: 229–232.CrossRefGoogle Scholar
  12. Meier-Dinkel, A., 1986, In vitro Vermehrung ausgewählter Genotypen der Vogelkirsche (Pruns avium L.). Allgem. Forst- und Jagdzeitung, 157: 139–144.Google Scholar
  13. Séguin, A. and Lalonde, M., 1988, Gene transfer by electroporation in Betulaceae protoplasts: Alnus incana. Plant Cell Reports, 7: 367–370.Google Scholar
  14. St. Clair, J.B., Kleinschmit, J. and Svolba, J., 1985, Juvenility and serial vegetative propagation of Norway spruce clones (Picea abies Karst.) Silvae Genetica, 34: 42–48.Google Scholar
  15. Vieitez, A.M., Ballester, A., Vieitez, H.L., San Jose, M.C., Vieitez, F.J. and Vieitez, E., 1987, Propagacion de plantas lenosas por cultivo “in vitro”. Diputacion Provincial Pontevedra, 97 p.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Jochen Kleinschmit
    • 1
  • Andreas Meier-Dinkel
    • 1
  1. 1.Department of Forest Tree BreedingLower Saxony Forest Research InstituteStaufenberg-EscherodeF.R. Germany

Personalised recommendations