Advertisement

Plant Aging pp 311-318 | Cite as

Biotechnology in Forest Tree Improvement: Trees of the Future

  • Vladimír Chalupa
Part of the NATO ASI Series book series (NSSA, volume 186)

Abstract

Forest trees are the important source of renewable raw material and play a significant role in the formation of environment, with important functions in the field of soil protection, water retention, CO2 absorption and carbon storage, recreation and health improvement. The growing importance of all these functions can be expected in the near future and society is likely to highly appreciate them. With the growing world population, the deforestation occurs, above all in developing countries. In some industrial countries, air pollution, acid rains, drought, wind, snow, pests and diseases cause serious damages on forest stands. Present situation calls for urgent intensification of forest tree breeding. Long reproductive cycle of forest trees is a serious obstacle for effective tree improvement. Conventional tree breeding techniques using controlled crossing for transfer of desirable traits are time-consuming. The application of parasexual genetic recombination methods (cytogenetic manipulations, recombinant DNA technology) in forestry will accelerate tree improvement programs.

Keywords

Somatic Embryo Somatic Embryogenesis Forest Tree Forest Tree Species Synthetic Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, M.R., 1988, Gene transfer in woody plants: perspectives and limitations. In: Somatic Cell Genetics of Woody Plants, M.R. Ahuja, ed., Kluwer Academic Publishers, Dordrecht, pp. 83–101.CrossRefGoogle Scholar
  2. Chalupa, V., 1977, Organogenesis in Norway spruce and Douglas-fir tissue cultures. Commun. Inst. For. Cechosl., 10:79–87.Google Scholar
  3. Chalupa, V., 1979, In vitro propagation of some broadleaved forest trees. Commun. Inst. For. Cechosl., 11:159–170.Google Scholar
  4. Chalupa, V., 1981a, In vitro propagation of birch (Betula verrucosa Ehrh.). Biol. Plant., 23:472–474.CrossRefGoogle Scholar
  5. Chalupa, V., 1981b, Clonal propagation of broadleaved forest trees in vitro. Commun. Inst. For. Cechosl.,12:255–271.Google Scholar
  6. Chalupa, V., 1983a, In vitro propagation of willows (Salix spp.), European mountain-ash (Sorbus aucuparia L.) and black locust (Robinia pseudoacacia L.). Biol. Plant., 25:305–307.CrossRefGoogle Scholar
  7. Chalupa, V., 1983b, Micropropagation of conifer and broadleaved forest trees. Commun. Inst. For. Cechosl., 13:7–39.Google Scholar
  8. Chalupa, V., 1984, In vitro propagation of oak (Quercus robur L.) and linden (Tilia cordata Mill.).Biol.Plant., 26:374–377.CrossRefGoogle Scholar
  9. Chalupa, V., 1985a, Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Commun. Inst. For. Cechosl., 14:57–63.Google Scholar
  10. Chalupa, V., 1985b, In vitro propagation of Larix, Picea, Pinus, Quercus, Fagus and other species using adenine-type cytokinins and thidiazuron. Commun. Inst. For. Cechosl., 14:65–90.Google Scholar
  11. Chalupa, V., 1987a, Effect of benzylaminopurine and thidia-zuron on in vitro shoot proliferation of Tilia cordata Mill./ Sorbus aucuparia L. and Robinia pseudoaeaoia L.. Biol. Plant., 29:425–429.CrossRefGoogle Scholar
  12. Chalupa, V., 1987b, European hardwoods. In: Cell and Tissue Culture in Forestry, Vol. 3,J.M. Bonga and D.J. Durzan, eds, Martinus Nijhoff, Dordrecht, pp. 224–246.Google Scholar
  13. Chalupa, V., 1988, Large scale micropropagation of Quercus robur L. using adenine-type cytokinins and thidiazuron to stimulate shoot proliferation. Biol. Plant., 30:414–421.CrossRefGoogle Scholar
  14. Chalupa, V., 1989a, Micropropagation of Larix decidua Mill. and Pinus sylvestris L., Biol. Plant., 31 (in press).Google Scholar
  15. Chalupa, V., 1989b, Micropropagation of mature trees of birch (Betula pendula Roth.) and aspen (Populus tremula L.). Lesnictví, 34 (in press).Google Scholar
  16. Chalupa, V. and Durzan, D.J., 1973, Growth of Norway spruce (Picea abies (L.) Karst.) tissue and cell cultures. Commun. Inst. For. Cechosl., 8:111–125.Google Scholar
  17. Durzan, D.J., 1982, Somatic embryogenesis and sphaeroblasts in conifer cell suspension. In: Plant Tissue Culture, A. Fujiwara, ed., Jap. Assoc, for Plant Tissue Culture, Tokyo, pp. 113–114.Google Scholar
  18. Durzan, D.J., 1987, Improved somatic embryo recovery. Bio/ Technology, 5:636–637.Google Scholar
  19. Durzan, D.J., 1988, Process control in somatic polyembryo-genesis. In: Molecular Genetics of Forest Trees, J.E. Hällgren, ed., Swedish Univ. Agricult. Sciences, Umea, pp. 147–186.Google Scholar
  20. Durzan, D.J. and Gupta, P.K., 1987, Somatic embryogenesis and polyembryogenesis in Douglas fir cell suspension cultures. Plant Sci, 52:229–235.CrossRefGoogle Scholar
  21. Fillatti, J.J., Selmer, J., McCown, B., Haissig, B. and Cornai, L., 1987, Agrobacterium mediated transformation and regeneration of Populus. Mol. Gen. Genet., 206:192–199.CrossRefGoogle Scholar
  22. Gupta, P.K. and Durzan, D.J., 1986a, Plantlet regeneration via somatic embryogenesis from subcultured callus of mature embryos of Picea abies (Norway spruce).In Vitro, 22:685–688.Google Scholar
  23. Gupta, P.K. and Durzan, D.J., 1986b, Somatic polyembryogenesis from callus of mature sugar pine embryos. Bio/ Technology, 4:643–645.Google Scholar
  24. Hakman, I., Fowke, L.C., von Arnold, S. and Eriksson, T., 1985, The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci., 38:53–59.CrossRefGoogle Scholar
  25. Klein, T.M., Wolf, E.D., Wu, R. and Sanford, J.C., 1987, High-velocity microprojectiles for delivering nucleic acids into living cells. Nature, 327:70–73.CrossRefGoogle Scholar
  26. Kriebel, H.B.,1988, Molecular biology in forestry research: when is it relevant and how can we use it? In: Molecular Genetics of Forest Trees, J.E. Hällgren, ed., Swedish Univ. Agricult. Sciences, Umea, pp. 5–18.Google Scholar
  27. Nagmani, R. and Bonga, J.M., 1985, Embryogenesis in subcultured callus of Larix deoidua. Can. J. For. Res., 15:1088–1091.CrossRefGoogle Scholar
  28. Weber, G., Monajembashi, S., Greulich, K.O. and Wolfrum, J., 1988, Microperforation of plant tissue with a UV laser microbeam and injection of DNA into cells. Naturwissenschaften, 75:35–36.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Vladimír Chalupa
    • 1
  1. 1.Forestry and Game Management Research InstitutePraha 5Czechoslovakia

Personalised recommendations