Plant Aging pp 125-131 | Cite as

The Control by Cryopreservation of Age-Related Changes in Plant Tissue Cultures

  • Erica E. Benson
  • Keith Harding
Part of the NATO ASI Series book series (NSSA, volume 186)


Cryopreservation is the process by which viable tissues are stored at ultra-low temperatures (-196°C) in liquid nitrogen. Metabolism is suspended and evidence suggests that genetic stability is maintained. The following provides a brief account of cryopreservation methodology (see also Withers, 1987; Benson and Withers, 1988).


Somaclonal Variation Plant Tissue Culture Rosmarinic Acid Cryogenic Treatment Cryopreservation Protocol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bajaj, Y. P. S., 1986. Cryopreservation of potato somaclones, pp 244–250, in: “Somaclonal Variation and Crop Improvement”. J. Semal, ed., Nijhoff Dordrecht, Lancaster.Google Scholar
  2. Benson, E. E. and Withers, L. A., 1988. The application of germplasm storage in biotechnology, pp 430–433, in: “Plant Cell Biotechnology”, NATO ASI Series H. Cell Biology Volume 18. M. S. S. Pais, F. Mavituna and J. M. Novais, eds, Springer-Verlag, Heidelberg.Google Scholar
  3. Brettell, R. S., Dennis, E. S., Scowcroft, W. R. and Peacock, W. J., 1986. Molecular analysis of a somaclonal mutant of maize alcohol dehydrogenase. Mol. Gen. Genet., 202:235–239.CrossRefGoogle Scholar
  4. Butenko, R. G., Popov, A. S., Volkova, L. A., Chernyak, N. D. and Nosov, A. M., 1984. Recovery of cell cultures and their biosynthetic capacity after storage of Dioscorea deltoidea and Panax ginseng cells in liquid nitrogen. Pl. Sci. Letts, 33:285–292.CrossRefGoogle Scholar
  5. Cella, R., Colombo, R., Galli, M. G., Nielsen, E., Rollo, F. and Sula, F., 1982. Freeze-preservation of rice cells: a physiological study of freeze-thawed cells. Physiol. Plant., 55:274–284.CrossRefGoogle Scholar
  6. Chen, T. H. H., Kartha, K. K., Leung, N. L., Kurz, W. G. W., Chatson, K. B. and Constabel, F., 1984. Cryopreservation of alkaloid-producing cell cultures of periwinkle (Catharanthus roseus). Plant Physiol., 75:726–731.PubMedCrossRefGoogle Scholar
  7. Chen, T. H. H., Kartha, K. K. and Gusta, L. V., 1985. Cryopreservation of wheat suspension culture and regenerable callus. Plant Cell Tissue Organ Culture, 4:101–109.CrossRefGoogle Scholar
  8. Diettrieh, B., Popov, A. S., Pfeiffer, B., Neumann, D., Butenko, R. and Luekner, M., 1982. Cryopreservation of Digitalis lanata cells grown in vitro. Precultivation and recultivation. J. Plant Physiol., 126:63–73.CrossRefGoogle Scholar
  9. Diettrich, B., Haack, U., Popov, A. S., Butenko, R. G. and Luekner, M., 1985. Long-term storage in liquid nitrogen of an embryonic cell strain of Digitalis lanata. Biochem. Physiol. Pflanzen, 180:33–43.Google Scholar
  10. Deroles, S. C. and Gardner, R. C., 1988a. Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Molecular Biology, 11:365–377.CrossRefGoogle Scholar
  11. Deroles, S. C. and Gardner, R. C., 1988b. Expression and inheritance of kanamycin resistance in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Molecular Biology, 11:355–364.CrossRefGoogle Scholar
  12. Deus-Neumann, B. and Zenk, M. H., 1984. Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Medica, 50:427–431.PubMedCrossRefGoogle Scholar
  13. Evans, D. A., 1989. Somaclonal variation. Genetic basis and breeding applications. TIG, 5:46–50.PubMedCrossRefGoogle Scholar
  14. Feher, F., Tarczy, H., Bocsa, I. and Dudits, D., 1989. Somaclonal chromosome variation in tetraploid alfalfa. Plant Sci., 60:91–99.CrossRefGoogle Scholar
  15. Finkle, B. J., Ulrich, J. M., Rains, D. W. and Stavarek, S. J., 1985. Growth and regeneration of alfalfa callus lines after freezing in liquid nitrogen. Plant Sci., 42:133–140.CrossRefGoogle Scholar
  16. Hauptmann, R. M. and Widholm, J. M., 1982. Cryostorage of cloned amino acid analog-resistant carrot and tobacco suspension cultures, Chapter 11, pp 217–227, in: “Cell Culture and Somatic Cell Genetics”, Volume 4. I. K. Vasil and F. Constabel, eds, Academic Press Inc., London.Google Scholar
  17. Holden, P. R., Aitken, M., Lindsey, K. and Yeoman, M. M., 1986. Variability and stability of cell cultures of Capsicum frutescens, pp 31–243, in: “Secondary Metabolism in Plant Cell Cultures”. P. Morris, A. H. Scragg, A. Stafford and M. W. Fowler, eds, Cambridge University Press, Cambridge.Google Scholar
  18. Kovacs, E. I., 1985. Regulation of karyotype stability in tobacco tissue cultures of normal and tumorous genotypes. Theor. Appl. Genet., 70:548–554.CrossRefGoogle Scholar
  19. Landsmann, J. and Uhrig, H., 1985. Somaclonal variation in Solanum tuberosum detected at the molecular level. Theor. Appl. Genet., 71:500–505.CrossRefGoogle Scholar
  20. Pijnacker, L. P., Hermelink, J. H. M. and Ferwerda, M. A., 1986. Variability of DNA content and karyotype in cell cultures of interdihaploid Solanum tuberosum. Pl. Cell Reports, 5:43–46.CrossRefGoogle Scholar
  21. Ramulu, K. S., Dijkhuis, K. S. and Roest, S., 1989. Patterns of phenotypic and chromosome variation in plants derived from protoplast cultures of monohaploid, dihaploid and diploid genotypes and in somatic hybrids of potato. Pl. Sci., 60:101–110.CrossRefGoogle Scholar
  22. Reuff, I., Seitz, U., Ulbrich, B. and Reinhard, E., 1988. Cryopreservation of Coleus blumei suspension and callus cultures. J. Pl. Physiol., 133:414–418.CrossRefGoogle Scholar
  23. Seitz, U., Alfermann, A. W. and Reinhard, E., 1983. Stability of biotransformation capacity in Digitalis lanata cell cultures after cryogenic storage. Plant Cell Reports, 2:273–276.CrossRefGoogle Scholar
  24. Shillito, R. D., Carswell, G. K., Johnson, C. M., Dimaio, J. J. and Harms, C. T., 1989. Regeneration of fertile plants from protoplasts of elite inbred maize. Biotechnology, 7:581–594.CrossRefGoogle Scholar
  25. Stiekema, W. J., Heidekamp, F., Louwerse, J. D., Verhoeven, H. A. and Dijkhuis, P., 1988. Introduction of foreign genes into potato cultivars Bintje and Desiree using an Agrobacterium tumefaciens binary vector. Plant Cell Reports, 7:47–50.CrossRefGoogle Scholar
  26. Strauss, A., Fankhauser, H. and King, P. J., 1985. Isolation and cryopreservation of O-methyl threonine-resistant Rosa cell lines altered in the feed back sensitivity of L. threonine deaminase. Planta, 163:554–562.CrossRefGoogle Scholar
  27. Takeuchi, M., Matsushima, H. and Sugawara, Y., 1982. Totipotency and viability of protoplasts after long-term freeze perservation, in: “Proc. 5th Intl. Cong. Plant Tissue and Cell Culture, Tokyo, Japan”. Fujiwara, A., ed., The Japanese Association for Plant Tissue Culture.Google Scholar
  28. Ulrich, J. M., Finkle, B. J. and Tisserat, B. H., 1982. Effects of cryogenic treatment on plantlet production from frozen and unfrozen date palm callus. Plant Physiol., 69:624–627.PubMedCrossRefGoogle Scholar
  29. Volkova, L. A., Gorskaya, N. V., Popov, A. S., Paukov, V. N. and Urmantseva, V. V., 1986. Preservation of the main characteristics of Dioscorea mutant cell strains after storage at extemely low temperatures. Fiziologia Rasterii, 33:779–787.Google Scholar
  30. Withers, L. A., 1987. Long-term preservation of plant cells, tissues and organs. Oxford Surveys of Plant Molecular and Cell Biology, 4:221–227.Google Scholar
  31. Zheng, K. L., Castiglione, S., Biasini, M. G., Biroli, A., Morandi, C. and Sala, F., 1987. Nuclear DNA amplification in cultured cells of Oryza sativa L. Theor. Appl. Genet., 74:65–70.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Erica E. Benson
    • 1
  • Keith Harding
    • 2
  1. 1.Department of Agriculture and HorticultureNottingham University School of AgricultureLoughborough, LeicsUK
  2. 2.Department of Genetics, School of Biological Sciences, Medical School, Queens Medical CentreUniversity of NottinghamNottinghamUK

Personalised recommendations