Aging of Meristems and Morphogenetic Potentialities

  • Victorio S. Trippi
Part of the NATO ASI Series book series (NSSA, volume 186)


The term “aging” refers to chronological changes in plants. In many plants requiring a maturation period, morphogenetic potentialities of meristems may change during aging until flowering and later on, until death. These changes induce “heteroblastic development” (Goebel, 1889). As plants display different morphogenetic qualities along the shoot, an ascendent gradient of aging has been suggested. Molisch (1938) called this phenomenon “topophysis” (from the Greek topos = location and physis = nature) to point out the different morphogenetic potentialities of meristems located at different places. The same phenomenon was referred later on as “physiological aging of meristems” (Schaffalitzky, 1959). The aging of meristems can be defined as the qualitative changes induced by internal and/or environmental factors on morphogenetic potentialities resulting in flowering and the loss of proliferation capacity which leads to senescence.


Gibberellic Acid Growth Habit Adult Form Leaf Form Cynodon Dactylon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allsopp, A., 1964, The metabolic status and morphogenesis, Phytomorphology 14: 1.Google Scholar
  2. Allsopp, A., 1965, Heteroblastic development in cormophytes, in: “Encyclop. Plant Physiol.”, Springer-Verlag.Google Scholar
  3. Allsopp, A., 1966, Heteroblastic development in vascular plants, Adv. in Morphogenesis 5: 127.Google Scholar
  4. Ashby, E., 1950, Studies in the morphogenesis of leaves. VI. Some effects of lenght of day upon leaf shape of Ipomea coerulea, New Phytol. 49: 375.CrossRefGoogle Scholar
  5. Doorembos, J., 1954, Rejuvenation of Hedera helix in graft combinations, Proc. Kon. Ned. Akad. Wetensch. Ser. C 57: 99.Google Scholar
  6. Goebel, K., 1889, Ueber die Jugendzudstände der Pflanzen, Flora 72: 1.Google Scholar
  7. Hansen, J., and Eriksen, E. N., 1974, Root formation of pea cuttings in relation to irradiance of the stock plants, Physiol. Plant. 32: 170.CrossRefGoogle Scholar
  8. Henssen, A., 1954, Die Dauerorgane von Spirodella polyrrhiza (L.) Schalid., Flora 141: 523.Google Scholar
  9. Hillmann, W. S., 1961, The lemnaceae, or duckweeds, The Bot. Rev. 27: 221.CrossRefGoogle Scholar
  10. Kenis, J. D., and Trippi, V. S., 1986, Regulation of nitrate reductase in detached oat leaves by light and oxygen. Physiol. Plant. 68: 387.CrossRefGoogle Scholar
  11. Knight, R. C., 1926, The propagation of fruit tree stocks by stem cuttings, Journ. Pomology 5: 248.Google Scholar
  12. Larrieu, C., et Trippi, V. S., 1979, Etude du viellissement d’Anagallis arvensis L.: Action régulatrice de la lumiere, du saccharose et de l’acide indolyl-acetique sur la capacité rhizogénique des feuilles et des rameaux axillaires, Biol. Plantarum 21: 336.CrossRefGoogle Scholar
  13. Leroux, R., 1973, Contribution a l’étude de la rhizogenese de fragments de tiges de Pois (Pisum sativum L.) cultivés in vitro, Rev. Cytol. et Biol. Veg. 36: 1.Google Scholar
  14. Lovell, P. H., and Moore, K. G., 1969, The effect of light and cotyledon age on growth and root formation in excised cotyledons of Sinapis alba L., Planta 85: 351.CrossRefGoogle Scholar
  15. Lovell, P. H., Illsey, A., and Moore, K. G., 1972, The effects of light intensity and sucrose on root formation, photosynthetic ability and senescence in detached cotyledons of Sinapis alba L. and Raphanus sativus L., Ann. Bot. 36: 123.Google Scholar
  16. Mes, M. G., and Menge, I., 1954, Potato shoot and tuber cultures in vitro, Physiol. Plant. 7: 637.CrossRefGoogle Scholar
  17. Millener, L. H., 1961, Day-lenght as related to vegetative development in Ulex europaeus L. I. The experimental approach, New Phytol. 60: 339.CrossRefGoogle Scholar
  18. Molisch, H., 1938, “The longevity of plants”, H. Fulling, ed., New York.Google Scholar
  19. Montaldi, E. R., 1969, Gibberellin-sugar interaction regulating the growth habit of Bermudagrass (Cynodon dactylon (L.) Pers.), Experientia 25: 91.PubMedCrossRefGoogle Scholar
  20. Montaldi, E. R., 1973, Epinasty in Cynodon plectostachyum R. Pilger induced by sucrose and its reversion by gibberellic acid and nitrogen compounds, Experientia 29: 1031.CrossRefGoogle Scholar
  21. Montaldi, E. R., Caso, O. H., y Lewin, I., 1963a, Algunos factores que afectan la morfología de las hojas de una planta de desarrollo heteroblástico, Rev. Inv. Agric. 17: 321.Google Scholar
  22. Montaldi, E. R., 1963b, Rejuvenecimiento de plantas por diferenciación de yemas en callos, Rev. Inv. Agric. 17: 441.Google Scholar
  23. Nanda, K. K., Purohit, A. N., and Bala, A., 1967, Effect of photoperiod, auxins and gibberellic acid on roting of stem cuttings of Bryophyllum tubiflorum, Physiol. Plant. 20: 1096.CrossRefGoogle Scholar
  24. Nitsch, C., 1968, Induction in vitro de la floraison chez une plante de jour courts. Plumbago indica L., Ann. Sci. Natur. Bot. Serie 12 9: 1.Google Scholar
  25. Njoku, E., 1958, Effect of gibberellie acid on leaf form, Nature 182: 1097PubMedCrossRefGoogle Scholar
  26. Pfirsch, E., 1978, Induction de la croissance plagiotrope chez le Stachys silvatica L. Role de l’acide abscissique dans le mécanisme autorépétitif, Bull. Soc. Bot. France 125: 231.Google Scholar
  27. Robbins, W. J., 1957, Gibberellic acid and reversal of adult Hedera to a juvenile state, Amer. J. Bot. 44: 743.CrossRefGoogle Scholar
  28. Schaffalitzky de Muckadell, M., 1959, Investigations on aging of apical meristems in woody plants and its importance in silviculture, Det Forstlige Forsogsv. Danmark 25: 309.Google Scholar
  29. Silvente, S., and Trippi, V. S., 1986, Sucrose-modulated morphogenesis in Anagallis arvensis L., Plant Cell Physiol. 27: 349.Google Scholar
  30. Trippi, V. S., 1963, Studies on ontogeny and senility in plants. VI. Reversion in Acacia melanoxylon and morphogenetic changes in Gaillardia pulchella, Øyton 20: 172.Google Scholar
  31. Trippi, V. S., 1964, Studies on ontogeny and senility in plants. VII. Aging of the apical meristems, physiological age and rejuvenation in tomato plants Øyton 21: 167.Google Scholar
  32. Trippi, V. S., 1965, Studies on ontogeny and senility in plants. XI. Leaf shape and longevity in relation to photoperiodism in Gaillardia pulchella, Øyton 22: 113.Google Scholar
  33. Trippi, V. S., 1982, “Ontogenia y Senilidad en Plantas”, Univ. Nac. Córdoba, CórdobaGoogle Scholar
  34. Trippi, V. S., and Brulfert, J., 1983, Organization of the morphophysiologic unit in Anagallis arvensis L. and its relation with the perpetuation mechanism and senescence, Amer. J. Bot. 60: 641.CrossRefGoogle Scholar
  35. Wellensiek, S. J., 1952, Rejuvenation of woody plants by formation of sphaeroblasts, Koninkl. Nederl, Akademie van Wetenschappen, Proc. Serie G 55: 567.Google Scholar
  36. Wochting, H., 1904, Uber die regeneration der Araucaria excelsa, Jb. Wiss. Bot. 40: 144.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Victorio S. Trippi
    • 1
  1. 1.Laboratorio de Fisiología VegetalUniv. Nac. de CórdobaCórdobaArgentina

Personalised recommendations