Parvalbumin, Molecular and Functional Aspects

  • Claus W. Heizmann
  • Jürg Röhrenbeck
  • Willem Kamphuis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 269)


Parvalbumin was the first calcium-binding protein to be crystallized (Kretsinger 1980). From these data, the EF-hand structural arrangement, common to many calcium-binding proteins, was deduced. Parvalbumin contains 3 EF-hands but only the two COOH-terminal domains bind calcium. Parvalbumins were first isolated from the skeletal muscle of lower vertebrates (Hamoir, 1968; Pechère et al., 1971; Gerday, 1988) and later from skeletal muscles, testis, kidney and brain of various species including man (Heizmann, 1984; Heizmann and Berchtold, 1987).


GABAergic Neuron Amacrine Cell Horizontal Cell GABAergic Interneuron Stratum Radiatum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, K. J., Borja, M. A., Cotman, C. W., Moffett, J. R., Namboodiri, MAA, Neale, J.H., 1987, N-Acetylaspartylglutamate identified in the rat retinal ganglion cells and their projections in the brain, Brain Res.. 411:172.PubMedCrossRefGoogle Scholar
  2. Baimbridge, K. G., and Miller, J. J., 1988, Calcium binding proteins and experimental models of epilepsy, in: “Synaptic plasticity in the hippocampus,” H. L. Haas and G. BuzsÈki, eds., Springer-Verlag, Berlin, Heidelberg.Google Scholar
  3. Berchtold M. W., Epstein, P., Beaudet, A. L., Payne, E. M., Heizmann, C. W., and Means, A. R., 1987, The structural organization of the rat parvalbumin gene. J. Biol. Chem.. 262:8696PubMedGoogle Scholar
  4. Braun, K., Scheich, H., Schachner, M., and Heizmann, C. W., 1985a, Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch. I. Anatomy and vocal motor systems, Cell and Tissue Res., 240:101CrossRefGoogle Scholar
  5. Braun, K., Scheich, H., Schachner M., and Heizmann, C. W.,1985b, Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch. II. Visual system. Cell and Tissue Res., 240:117.CrossRefGoogle Scholar
  6. Celio, M. R., 1986, Parvalbumin in most gamma-aminobutyric acid containing neurons of the rat cerebral cortex, Science. 231:995.PubMedCrossRefGoogle Scholar
  7. Endo, T., Kobayashi, M., Kobayashi, S., and Onaya, T., 1986, Immunocytochemical and biochemical localization of parvalbumin in the retina, Cell Tissue Res., 243:213.PubMedCrossRefGoogle Scholar
  8. Gerday, Ch., 1988, Soluble calcium-binding proteins in vertebrates and invertebrate muscles, in:“ Calcium and calcium binding proteins. Molecular and functional aspects”, Ch. Gerday, L. Bollis and R. Gilles, eds., pp 23, Springer-Verlag, Heidelberg.Google Scholar
  9. Goddard, G. V., Mclntyre, P.C., and Leech, D. K., 1969, A permanent change in brain function resulting from daily electrical stimulation. Expl. Neurol., 25:295.CrossRefGoogle Scholar
  10. Hamoir, G., 1968, The comparative biochemistry of fish sarcoplasmic proteins, Acta Zool. Pathol., Antwerpen, 46:69.Google Scholar
  11. Hardin, S. H., Carpenter, C. D., Hardin, P. E., Bruskin A. M., and Klein, W. H., 1985, Structure of the Spec 1 gene encoding a major calcium-binding protein in the embryonic ectoderm of the sea urchin Strongylocentrotus purpuratus. J. Mol. Biol., 186:243.PubMedCrossRefGoogle Scholar
  12. Hardin, P. E., Angerer, L. M., Hardin, S. H., Angerer, R. C., and Klein, W. H., 1988, Spec 2 genes of Strongylocentrotus purpuratus. Structure and differential expression in embryonic aboral ectoderm cells, J. Mol. Biol., 202:417.PubMedCrossRefGoogle Scholar
  13. Heizmann, C. W., and Celio, M. R., 1987, Immunolocalization of parvalbumin, Methods in Enzvmology, 139: 552.CrossRefGoogle Scholar
  14. Heizmann, C. W., 1984, Parvalbumin, an intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells. Experientia. Basel, 40:910.CrossRefGoogle Scholar
  15. Heizmann, C. W., and Berchtold, M. R., 1987, Expression of parvalbumin and other calcium-binding proteins in normal and tumor cells: a topical review. Cell Calcium. 8:1.PubMedCrossRefGoogle Scholar
  16. Heizmann, C. W., and Hunziker, W., 1989, Intracellular calcium-binding molecules in: “Intracellular calcium regulation,” F. Bronner, ed., Alan R. Liss Inc., in press.Google Scholar
  17. Heizmann, C. W., and Braun, K., 1989, Calcium binding proteins. Molecular and functional aspects, in: “The role of calcium in biological systems,” L. J. Anghileri, ed., CRC-Press, Boca Rato, Florida, Vol V in press.Google Scholar
  18. Kamphuis, W., Wadman, W. J., Buijs, R. M., and Lopes da Silva, F. H., 1986, Decrease in number of hippocampal gamma-aminobutyric acid (GABA) immunoreactive cells in the rat kindling model of epilepsy, Exp. Brain Res.. 64:491.PubMedCrossRefGoogle Scholar
  19. Kamphuis, W., Wadman, W. J., Buijs, R. M., and Lopes da Silva, F. H., 1987, The development of changes in hippocampal gamma-aminobutyric acid (GABA) in the rat kindling model of epilepsy: A light microscopic study with GABA-antibodies. Neuroscience. 23:433.PubMedCrossRefGoogle Scholar
  20. Kamphuis, W., Wadmann, W. J., Huisman, E., Heizmann, C. W., and Lopes da Silva, F. H., 1989a, Kindling induced changes in parvalbumin immunoreactivity in rat hippocampus and its relation to long-term decrease in GABA-immunoreactivity, Brain Res., 479:23.PubMedCrossRefGoogle Scholar
  21. Kamphuis, W., Huisman, E., Wadman, W. J., and Lopes da Silva, F. H., 1989b, Decrease in GABA immunoreactivity and alteration of GABA metabolism after kindling in the rat hippocampus, Exp. Brain Res.. 74:375.PubMedCrossRefGoogle Scholar
  22. Katsumaru, H., Kosaka, T., Heizmann, C. W., and Hama, K., 1988, Immunocytochemical study of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus, Exp. Brain Res., 72:347.PubMedGoogle Scholar
  23. Kawaguchi, Y., and Hama, K., 1987, Two subtypes of non-pyramidal cells in rat hippocampal formation identified by intracellular recording and HRP injection, Brain Res., 411:190.PubMedCrossRefGoogle Scholar
  24. Kawaguchi, Y., Katsumaru, H., Kosaka, T., Heizmann, C. W., and Hama, K., 1987, Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Res.. 416: 369.PubMedCrossRefGoogle Scholar
  25. Kosaka, T., Kosaka, K., Heizmann, C. W., Nagatsu, I., Wu, J.-W., Yanaihara, N., and Hama, K., 1987a, An aspect of the organization of the GABAergic system in the rat main olfactory bulb: laminar distribution of immunocytochemistry defined subpopulations of GABAergic neurons, Brain Res., 411:373.PubMedCrossRefGoogle Scholar
  26. Kosaka, T., Katsumaru, H., Hama, K., Wu, J-Y., and Heizmann, C. W., 1987b, GABAergic neurons containing the Ca2+ -binding protein parvalbumin in the rat hippocampus and the dentate gyrus, Brain Res., 419:119.PubMedCrossRefGoogle Scholar
  27. Kretsinger, R. H., 1980, Structure and evolution of calcium-modulated proteins, CRC Critical Reviews Biochem., 8:119.CrossRefGoogle Scholar
  28. Means, A. R., Putkey, J. A., and Epstein, P., 1988, Organisation and evolution of genes for calmodulin and other calcium-binding protein, in: “Calmodulin,” P. Cohen and C. B. Klee, eds., pp 17, Elsevier, N.Y.Google Scholar
  29. Meldrum, B. S., 1975, Epilepsy and gamma-aminobutyric acid-mediated inhibition, Int. Rev. Neurobiol., 17:1.PubMedCrossRefGoogle Scholar
  30. Meldrum, B. S., 1986, Cell damage in epilepsy and the role of calcium in cytotoxicity, in: Advances in Neurology, vol 44, A. V. Delgado-Escueta, J. J. Ward Jr., D. M. Woodbury, and R. J. Porter, eds., pp 849, Raven Press, N.Y.Google Scholar
  31. McNamara, J. O., Bonhaus D. W., Shin, C., Crain, B. J., Gellman, R. L., and Giacchino, J. L., 1985, The kindling model of epilepsy: a critical review. CRC Critical Reviews Clin. Neurobiol., 1:341.Google Scholar
  32. Pasteels, B., Parmentier, M., Lawson, E. M., Verstappen, A., and Pochet, R., 1987, Calcium binding protein immunoreactivity in the pigeon retina. Inv. Ophthal. Vis. Sci., 28:658.Google Scholar
  33. Pechère, J. F., Demaille, J., and Capony, J. F., 1971, Muscular parvalbumins: preparative and analytical methods of general applicability. Biochem. Biophys. Acta. 236:391.PubMedGoogle Scholar
  34. Peterson, S. L., and Albertson, T. E., 1982, Neurotransmitter and neuromodulator function in the kindled seizure and state. Progr. Neurobiology, 19:237.CrossRefGoogle Scholar
  35. Pourcho, R. G., 1982, Dopaminergic amacrine cells in the cat retina. Brain Res., 252:101.PubMedCrossRefGoogle Scholar
  36. Pourcho, R. G., and Goebel, D. J., 1985, A combined Golgi and autoradiographic study of (3H)glycine accumulating amacrine cells in the cat retina, J. Comp. Neurol., 233:473.PubMedCrossRefGoogle Scholar
  37. Rabié, A., Thomasset, M., Parkes, C.O., and Clavel, M.C., 1985, Immunocytochemical detection of 28000-MW calcium-binding protein in horizontal cells of the rat retina. Cell Tissue Res., 240:493.PubMedCrossRefGoogle Scholar
  38. Roberts, E., 1986, GABA: The road to neurotransmitter status, in: Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties, R. W. Olsen and J. G. Venter, eds., pp 1, Alan R. Liss, N.Y.Google Scholar
  39. Röhrenbeck, J., Wässle, H., and Heizmann, C. W., 1987, Immunocytochemical labelling of horizontal cells in mammalian retina using antibodies against calcium-binding proteins, Neurosci. Letters. 77:255.CrossRefGoogle Scholar
  40. Röhrenbeck, J., Wässle, H., and Boycott, B. B., 1989, Horizontal cells in the monkey retina, Europ. J. Neurosci., in press.Google Scholar
  41. Schreiner, D. A., Jande, S. S., and Lawson, D. E. M., 1985, Target cells of vitamin D in the retina, Acta anat., 121:153.PubMedCrossRefGoogle Scholar
  42. Seress, L, and Ribak, C. E., 1985, A combined Golgi-electron microscopic study of non-pyramidal neurons in the CA1 area of the hippocampus. J. Neurocvt., 14:717.CrossRefGoogle Scholar
  43. Stichel, C. C., Kaegi, U., and Heizmann, C. W., 1986, Parvalbumin in the cat brain: isolation, characterization, and localization. J. Neurochem., 47:46.PubMedCrossRefGoogle Scholar
  44. Stichel, C. C., Singer, W., and Heizmann, C. W., 1988, Light and electron microscopic immunocytochemical localization of parvalbumin in the dorsal lateral geniculate nucleus of the cat: evidence for coexistence with GABA. J. Comp. Neurol. 268:29.PubMedCrossRefGoogle Scholar
  45. Verstappen, A., Parmentier, M., Chirnoaga, M., Lawson, D. E. M., Pasteels, J. L., and Pochet, R., 1986, Vitamin D-dependent calcium binding protein immunoreactivity in human retina, Ophthalmic Res., 18:209.PubMedCrossRefGoogle Scholar
  46. Voigt, T., and Wässle, H., 1987, Dopaminergic innervation of AII amacrine cells in mammalian retina, J. Neurosci. 7:4115.PubMedGoogle Scholar
  47. Wässle, H., Peichl, L., and Boycott, B. B., 1978, Topography of horizontal cells in the retina of the domestic cat. Proc. R. Soc. Lond. B., 203:269.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Claus W. Heizmann
    • 1
  • Jürg Röhrenbeck
    • 2
  • Willem Kamphuis
    • 3
  1. 1.Department of Pediatrics, Division of Clinical ChemistryUniversity of ZürichZürichSwitzerland
  2. 2.Max-Planck Institute for Brain ResearchFrankfurt 71Germany
  3. 3.Department of General ZoologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations