Mutant Analysis Approaches to Understanding Calcium Signal Transduction Through Calmodulin and Calmodulin Regulated Enzymes

  • J. Haiech
  • M.-C. Kilhoffer
  • T. A. Craig
  • T. J. Lukas
  • E. Wilson
  • L. Guerra-Santos
  • D. M. Watterson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 269)


Calcium is one of several intracellular signal transducers utilized by eukaryotic cells as part of their integrated responses to external stimuli. For example, the occupancy of a cell surface receptor by a drug, hormone or a growth/differentiation factor often results, directly or indirectly, in a rise in the intracellular concentration of ionized calcium. This transient, localized rise in calcium sets off a discrete set of cellular responses. The ability of a divalent ion to serve as a selective and quantitative messenger in a complex biological system is based on calcium’s ability to reversibly interact with and modulate the structure of a class of proteins referred to as calcium-modulated proteins (for a review see Van Eldik et al., 1982). One of these calcium modulated proteins that has been found in all eukaryotic cells examined is calmodulin.


Calcium Binding Protein Engineering Myosin Light Chain Kinase Acidic Amino Acid COOH Terminus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alber, T., Bell, JA., Dao-Pin S., Nicholson, H., Wozniak, J.A., Cook, S., and Matthews, B.W., 1988, Replacements of Pro86 in Phage T4 lysozyme extend an alpha-helix but do not alter protein stability, Science. 239:631–635.PubMedCrossRefGoogle Scholar
  2. Alber, T., Dao-Pin S., Wilson K., Wozniak, J.A., Cook, S.P., and Matthews, B.W., 1987, Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme. Nature, 330:41–46.PubMedCrossRefGoogle Scholar
  3. Alvarado-Urbina, G., Chiarello, R., Roberts, D., Vilain, G., Jurik, F., Christensen, L., Carmona, C., Fang, L., Watterson, M., and Crea, R., 1985, Chemical synthesis and expression of a calmodulin gene. Rapid automated synthesis via diisopropylaminophosphoramidite in situ activation, DNA. 4:94.Google Scholar
  4. Asselin, J., Phaneuf, S., Watterson, D.M., and Haiech, J., 1989, Metabolically 35S-labeled recombinant calmodulin as a ligand for the detection of calmodulin-binding proteins. Anal. Biochem., 178:141–147.PubMedCrossRefGoogle Scholar
  5. Babu, Y.S., Bugg, C.E., and Cook, W.J., 1988, Structure of calmodulin refined at 2.2 Ð resolution, J. Mol. Biol., 204:191–204.PubMedCrossRefGoogle Scholar
  6. Blumenthal, D.K., Takio, K., Edelman, A.M., Charbonneau, H., Titani, K., Walsh, K.A., and Krebs, E.G., 1985, Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase, Proc. Natl. Acad. Sci. USA. 82:3187–3191.PubMedCrossRefGoogle Scholar
  7. Burgess-Cassler, A., Hinrichsen, R.D., Maley, M.E., and Kung, C., 1987, Biochemical characterization of a genetically altered calmodulin in Paramecium. Biochimica et Biophysica Acta. 913:321–328.PubMedCrossRefGoogle Scholar
  8. Chabbert, M., Kilhoffer, M.-C., Watterson, D.M., Haiech, J., and Lami, H., 1989, Time-resolved fluorescence study of VU-9 calmodulin, an engineered calmodulin possessing a single tryptophan residue, Biochemistry, 28:6093–6098.PubMedCrossRefGoogle Scholar
  9. Cohen, P., and Klee, C.B., 1988, “Calmodulin”, Elsevier, Amsterdam.Google Scholar
  10. Craig, T.A., Roberts, D.M., King, M.M., Lukas, T.J., Watterson, D.M., and Prendergast, F.G., 1987c, Sitespecific mutagenesis of central alpha-helix of calmodulin: effects of altering charge clusters, substitution of prolines and insertion of troponin C-like segment. Fed. Proc. 46:2001. (Abstr.)Google Scholar
  11. Craig, T.A., Watterson, D.M., and Hinrichsen, R.D., 1987a, Analysis of a mutant Paramecium with a non-lethal selective alteration in calmodulin regulation and a defective calcium-dependent potassium conductance. J. Cell Biol. 105:143a. (Abstr.)CrossRefGoogle Scholar
  12. Craig, T.A., Watterson, D.M., Prendergast, F.G., Haiech J., and Roberts, D.M., 1987b, Site-specific mutagenesis of the alpha-helices of calmodulin. Effects of altering a charge cluster in the helix that links the two halves of calmodulin. J. Biol. Chem., 262:3278–3284.PubMedGoogle Scholar
  13. Davis, T.N., Urdea, M.S., Masiarz, F.R., and Thorner, J., 1986, Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell. 47:423–431.PubMedCrossRefGoogle Scholar
  14. Forsen, S., Vogel, H.J., and Drakenberg, T., 1986, Biophysical studies of calmodulin, Calcium and Cell Function. VI:113–157.Google Scholar
  15. Haiech, J., Klee, C.B., and Demaille, J.G., 1981, Effects of cations on the affinity of calmodulin for calcium: ordered binding of calcium ions allows the specific activation of calmodulin stimulated enzymes, Biochemistry, 20:3890–3897.PubMedCrossRefGoogle Scholar
  16. Haiech, J., Predeleanu, R., Watterson, D.M., Ladant, D., Bellalou, J., Ullmann, A., and Barzu, O., 1988, Affinity-based chromatography utilizing genetically engineered proteins, J. Biol. Chem., 263:4259–4262.PubMedGoogle Scholar
  17. Haiech, J., and Watterson, D.M., 1988, Site-specific mutagenesis and protein engineering approach to the molecular mechanism of calcium signal transduction by calmodulin, In: “Calcium and Calcium Binding Proteins”, Ch. Gerday, R. Gilles, and L. Bolis, eds., Springer-Verlag, Berlin Heidelberg., 191–200.CrossRefGoogle Scholar
  18. Hurwitz, M.Y., Putkey, J.A., Klee, C.B., and Means, A.R., 1988, Domain II of calmodulin is involved in activation of calcineurin, FEBS Lett.. 238:82–86.PubMedCrossRefGoogle Scholar
  19. Kilhoffer, M.-C., Roberts, D.M., Adibi, A., Watterson, D.M., and Haiech, J., 1989, Fluorescence characterization of VU-9 calmodulin, an engineered calmodulin with one tryptophan in calcium binding domain III. Biochemistry. 28:6086–6092.PubMedCrossRefGoogle Scholar
  20. Kilhoffer, M.-C., Roberts, D.M., Adibi, A.O., Watterson, D.M., and Haiech, J., 1988, Investigation of the mechanism of calcium binding to calmodulin. Use of an isofunctional mutant with a tryptophan introduced by site-directed mutagenesis. J. Biol. Chem., 263:17023–17029.PubMedGoogle Scholar
  21. Klee, C.B., and Vanaman, T.C., 1982, Calmodulin, Adv. Pro. Chem., 35:213–321.CrossRefGoogle Scholar
  22. Lukas, T.J., Burgess, W.H., Prendergast, F.G., Lau, W., and Watterson, D.M., 1986, Calmodulin binding domains: characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase. Biochemistry. 25:1458–1464.PubMedCrossRefGoogle Scholar
  23. Lukas, T.J., Craig, TA., Roberts, D.M., Watterson, D.M., Haiech, J., and Prendergast, F.G., 1987, An interdisciplinary approach to the molecular mechanisms of calmodulin action : Comparative biochemistry, site-specific mutagenesis, and protein engineering, In: “Calcium-Binding Proteins in Health and Disease”, A.W. Norman, T.C. Vanaman, and A.R. Means, eds., Academic Press, Inc., 533–543.Google Scholar
  24. Lukas, T.J., Haiech, J., Lau, W., Craig, T.A., Zimmer, W.E., Shattuck, R.L., Shoemaker, W.O., and Watterson, D.M., 1988, Calmodulin and calmodulin-regulated protein kinases as transducers of intracellular calcium signals, Cold Spring Harbor. Symposia on Quantitative Biol., 53:185–193.CrossRefGoogle Scholar
  25. Lukas, T.J., Iverson, D.B., Schleicher, M., and Watterson, D.M., 1984, Structural characterization of a higher plant calmodulin. Plant Physiol.. 75:788–795.PubMedCrossRefGoogle Scholar
  26. Lukas, T.J., Wiggins, W.E., and Watterson, D.M., 1985, Amino acid sequence of a novel calmodulin from the unicellular alga Chlamydomonas. Plant Physiol. 78:477–483.PubMedCrossRefGoogle Scholar
  27. Marshak, D.R., Clarke, M., Roberts, D.M., and Watterson, D.M., 1984, Structural and functional properties of calmodulin from the eukaryotic microorganism Dictyostelium discoideum, Biochemistry23:2891–2899.PubMedCrossRefGoogle Scholar
  28. Matsumura, M., Becktel, W.J., and Matthews, B.W., 1988, Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3, Nature. 334:406–410.PubMedCrossRefGoogle Scholar
  29. Maune, J.F., Klee, C.B., and Beckingham, K., 1988, Calmodulin point mutations which affect Ca2+-binding and calcineurin activation. J. Cell Biol., 107:287a. (Abstr.)CrossRefGoogle Scholar
  30. Milos, M., Schaer, J.-J., Comte, M., and Cox, J.A., 1986, Calcium-proton and calcium-magnesium antagonisms in calmodulin: microcalorimetric and potentiometric analyses, Biochemistry. 25:6279–6287.PubMedCrossRefGoogle Scholar
  31. Olwin, B.B., and Storm, D.R., 1985, Calcium binding to complexes of calmodulin and calmodulin binding proteins, Biochemistry, 24:8081–8086.PubMedCrossRefGoogle Scholar
  32. Persechini, A., Hardy, D.O., Blumenthal, D.K., Jarrett, H.W., and Kretsinger, R.H., 1988, The effects on enzyme activation of genetically-engineered amino-acid deletions in the calmodulin long helix, Biophys. J., 53:252a (Abstr.)Google Scholar
  33. Putkey, J.A., Draetta, G.F., Slaughter, C.B., Klee, C.B., Cohen, P., Stull, J.T., and Means, A.R., 1986, Genetically engineered calmodulins differentially activate target enzymes, J. Biol. Chem., 261:9896–9903.PubMedGoogle Scholar
  34. Putkey, J.A., Ono, T., Van Berkum, M.F.A and Means, A.R., 1988, Functional significance of the central helix in calmodulin, J. Biol. Chem., 263:11242–11249.PubMedGoogle Scholar
  35. Roberts, D.M., R. Crea, M. Malecha, G. Alvarado-Urbina, R.H. Chiarello, and D.M. Watterson., 1985a, Chemical synthesis and expression of a calmodulin gene designed for site-specific mutagenesis, Biochemistry. 24:5090–5098.PubMedCrossRefGoogle Scholar
  36. Roberts, D.M., Crea, R., Malecha, M., and Watterson, D.M., 1985b, The chemical synthesis and expression of a gene coding for calmodulin. Fed. Proc. 44:1050. (Abstr.)Google Scholar
  37. Roberts, D.M., Rowe, P.M., Siegel, F.L., Lukas, T.J., and Watterson, D.M., 1986, Trimethyllysine and protein function. Effect of methylation and mutagenesis of lysine 115 of calmodulin on NAD kinase activation. J. Biol. Chem., 261:1491–1494.PubMedGoogle Scholar
  38. Roberts, D.M., Zimmer, W.E., and Watterson, D.M., 1987, The use of synthetic oligodeoxyribonucleotides in the examination of calmodulin gene and protein structure and function, Methods Enzym., 139:290–303.CrossRefGoogle Scholar
  39. Saimi, Y., Hinrichsen, R.D., Forte, M., and Kung, C., 1983, Mutant analysis shows that the Ca2+-induced K+ current shuts off one type of excitation in Paramecium, Proc. Natl. Acad. Sci. USA. 80:5112–5116.PubMedCrossRefGoogle Scholar
  40. Schaefer, W.H., Hinrichsen, R.D., Burgess-Cassler, A., Kung, C., Blair, I.A., and Watterson, D.M., 1987a, A mutant Paramecium with a defective calcium-dependent potassium conductance has an altered calmodulin: A nonlethal selective alteration in calmodulin regulation, Proc. Natl. Acad. Sci. USA. 84:3931–3935.PubMedCrossRefGoogle Scholar
  41. Schaefer, W.H., Lukas, T.J., Blair, I.A. Schultz, J.E., and Watterson, D.M., 1987b, Amino acid sequence of a novel calmodulin from Paramecium tetraurelia that contains dimethyllysine in the first domain, J, Biol. Chem., 262:1025–1029.Google Scholar
  42. Smith, V.L., Doyle, K.E., Maune, J.F., Munjaal, R.P., and Beckingham, K., 1987, Structure and sequence of the Drosophila melanogaster calmodulin gene. J. Mol. Biol., 196:471–485.PubMedCrossRefGoogle Scholar
  43. Takeda, T., and Yamamoto, M., 1987, Analysis and in vivo disruption of the gene coding for calmodulin in Schizosaccharomyces pombe, Proc. Natl. Acad. Sci. USA. 84:3580–3584,PubMedCrossRefGoogle Scholar
  44. Toda, H., Yazawa, M., Kondo, K., Honma, T., Narita, K., and Yagi, K., 1981, Amino acid sequence of calmodulin from scallop (Patinopecten) adductor muscle. J. Biochem., 90:1493–1505.PubMedGoogle Scholar
  45. Tschudi, C., Young, A.S., Ruben, L., Patton, C.L., and Richards, F.F., 1985, Calmodulin genes in trypanosomes are tandemly repeated and produce multiple mrnas with a common 5’ leader sequence, Proc. Natl. Acad. Sci. USA, 82:3998–4002.PubMedCrossRefGoogle Scholar
  46. Van Eldik, L.J., Zendegui, J.G., Marshak, D.R., and Watterson, D.M., 1982, Calcium-binding proteins and the molecular basis of calcium action, International Review of Cytology, 77:1–61.PubMedCrossRefGoogle Scholar
  47. Wang, C.L.A., 1985, A note on Ca2+ Binding to Calmodulin, Biochem. Biophys. Res. Comm., 130:426–430.PubMedCrossRefGoogle Scholar
  48. Watterson, D.M., Burgess, W.H., Lukas, T.J., Iverson, D., Marshak, D.R., Schleicher, M., Erickson, B.W., Fok, K.-F and Van Eldik, L.J., 1984, Towards a molecular and atomic anatomy of calmodulin and calmodulin-binding proteins, In: “Advances in Cyclic Nucleotide and Protein Phosphorylation Research”, S.J. Strada, and W.J. Thompson, eds., Raven Press, New York. 205–226.Google Scholar
  49. Watterson, D.M., Lukas, T.J., Roberts, D.M., and Crea, R., 1985a, Molecular analysis of calmodulin’s enzyme activator and drug binding activities. J. Cell Biochem.. Supplement 9B:139. (Abstr.)Google Scholar
  50. Watterson, D.M., and Roberts, D.M., 1985b, Analysis of the contribution of trimethyllysine/lysine-115 to calmodulin activity by using site-specific mutagenesis. J. Cell Biol., 101:474a. (Abstr.)Google Scholar
  51. Watterson, D.M., Roberts, D.M., and Lukas, T.J., 1985, Calmodulin molecular mechanisms: an interdisciplinary approach employing comparative biochemistry, site-directed mutagenesis and molecular biology, 13th Intl. Congress Biochemistry 272.(Abstr.)Google Scholar
  52. Watterson, D.M., Sharief, F., and Vanaman, T.C., 1980, The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. J. Biol. Chem., 255:962–975.PubMedGoogle Scholar
  53. Weber, P.C., Lukas, T.J., Craig, T.A., Wilson, E., King, M.M., Kwiatkowski, A.P., and Watterson, D.M., 1989, Computational and site-specific mutagenesis analyses of the asymmetric charge distribution on calmodulin, Proteins: Structure, Function and Genetics, in press.Google Scholar
  54. Wilson, E., Craig, T.A., and Watterson, D.M., 1988a, Similarities between the ion channel associated calmodulin binding protein and the beta subunit of GTP-binding proteins, J. Cell Biol., 107:142a. (Abstr.)Google Scholar
  55. Wilson, E., Hinrichsen, R.D., and Watterson, D.M., 1988b, Molecular mechanism of calmodulin regulation of calcium-dependent potassium channels, Proc. 4th Intl. Congress Cell Biol., p.5.5.7. (Abstr.)Google Scholar
  56. Zimmer, W.E., Schloss, J.A., Silflow, C.D., Youngblom, J., and Watterson, D.M., 1988, Structural organization, DNA sequence, and expression of the calmodulin gene. J. Biol. Chem., 263:19370–19383.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. Haiech
    • 1
  • M.-C. Kilhoffer
    • 2
  • T. A. Craig
    • 3
    • 4
  • T. J. Lukas
    • 3
    • 4
  • E. Wilson
    • 3
    • 4
  • L. Guerra-Santos
    • 3
    • 4
  • D. M. Watterson
    • 3
    • 4
  1. 1.LCBCNRSMarseilleFrance
  2. 2.Laboratoire de Biophysique, Faculté de Pharmacie de StrasbourgUniversité Louis PasteurStrasbourg CedexFrance
  3. 3.Department of PharmacologyVanderbilt UniversityNashvilleUSA
  4. 4.Laboratory of Cellular and Molecular PhysiologyHoward Hughes Medical InstituteNashvilleUSA

Personalised recommendations