Structure of the Human cDNAs and Genes Coding for Calbindin D28K and Calretinin

  • Marc Parmentier
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 269)


Calbindin D28K was first described by Wasserman and Taylor (1966) and is now considered as the main direct molecular effect of vitamin D derived hormones on gut epithelial cells. It is thought to play a major role in the absorption of calcium from the intestinal lumen and from the distal convoluted tubule of the kidney. The protein is postulated to act as a calcium ferry, facilitating the transport of calcium ions through the cell and keeping the actual free calcium below its toxic level (Jande et al., 1981, McBurney and Neering, 1987). Other cell types containing high amounts of calbindin are the neurons of the central and peripheral nervous systems (Roth et al. 1981), as well as the connected sensory organs (Verstappen et al. 1986), and the alpha and beta cells of the pancreatic islets (Pochet et al. 1987).


Distal Convoluted Tubule Restriction Fragment Length Polymorphism Calbindin D28K Chicken Sequence Imperfect Palindrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baimbridge, K.G., and Miller, J.J., 1982, Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat. Brain Res., 245: 223–229.PubMedCrossRefGoogle Scholar
  2. Benton, W.D., and Davis, R.W., 1977, Screening lgt recombinant clones by hybridization to single plaques in situ. Science. 196:180–182.PubMedCrossRefGoogle Scholar
  3. Bucher, P., and Trifonov, E.N., 1986, Compilation and analysis of eukaryotic Pol II promoter sequences. Nucl. Acids Res.. 14:10009–10026.PubMedCrossRefGoogle Scholar
  4. Evans, T., Schon, E., Gora-Maslak, G., Patterson, J., and Efstratiadis, A., 1984, Sl-hypersensitive sites in eukaryotic promoter regions. Nucl. Acids Res., 12: 8043–8058.PubMedCrossRefGoogle Scholar
  5. Feldman, S.C., and Christakos, S., 1983, Vitamin D-dependent calcium-binding protein in rat brain: biochemical and immunocytochemical characterization. Endocrinology, 112: 290–302.PubMedCrossRefGoogle Scholar
  6. Fournet, N., Garcia-Segura, L.M., Norman, A.W., and Orci, L., 1986, Selective localization of calcium-binding protein in human brain stem, cerebellum and spinal cord. Brain Res., 399: 310–316.PubMedCrossRefGoogle Scholar
  7. Henikoff, S., 1984, Unidirectional digestion with exonuclease III creates breakpoints for DNA sequencing. Gene. 28: 351–359.PubMedCrossRefGoogle Scholar
  8. Huynh, T.V., Young, RA, and Davis, R.W., 1985, Constructing and screening cDNA libraries in gt10 and gt11. in: “DNA cloning techniques”, D.M. Glover, ed., pp. 49–78, IRL Press, Oxford.Google Scholar
  9. Jande, S.S., Maler, L., and Lawson, D.E.M., 1981, Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain. Nature (London), 294: 765–767.PubMedCrossRefGoogle Scholar
  10. Kallfelz, F.A., Taylor, A.N., and Wasserman, R.H., 1967, Vitamin D-induced calcium-binding factor in rat intestinal mucosa. Proc. Soc. Exp. Biol. Med., 125: 54–58.PubMedGoogle Scholar
  11. Kimura, M., 1983, “The Neutral Theory of Evolution” Cambridge University Press, Cambridge.Google Scholar
  12. Kretsinger, R.H., 1980, Structure and evolution of calcium-modulated proteins. C.R.C. Crit. Rev. Biochem., 8: 119–174.CrossRefGoogle Scholar
  13. Legrand, Ch., Thomasset, M., Parkes, C.O., Clavel, M.C., and RabiÅ, A., 1983, Calcium-binding protein in the developing rat cerebellum. Cell Tissue Res., 233: 389–402.PubMedCrossRefGoogle Scholar
  14. McBurney, R.N., and Neering, I.R., 1987, Neuronal calcium homeostasis. Trends Neurosc. 10:164–169.CrossRefGoogle Scholar
  15. McClellan, J.A., Palacek, E., and Lilley, D.M.J., 1986, (A-T)n tracts embedded in random sequence DNA -Formation of a structure which is chemically reactive and torsionally deformable. Nucl. Acids Res., 14: 9291–9309.PubMedCrossRefGoogle Scholar
  16. Nickol, J.M., and Felsenfeld, G., 1983, DNA conformation at the 5’ end of the chicken adult Þ-globin gene. Cell. 35: 467–477.PubMedCrossRefGoogle Scholar
  17. Nussinov, R., Owens, J., and Maizel, J.V., 1986, Sequence signals in eukaryotic upstream regions. Bioch. Bioph. Acta. 866:109–119.Google Scholar
  18. Parmentier, M., Lawson, D.E.M., and Vassart, G., 1987a, Human 27-kDa calbindin complementary DNA sequence: Evolutionary and functional implications. Eur. J. Biochem.. 170: 207–215.PubMedCrossRefGoogle Scholar
  19. Parmentier, M., Ghysels, M., Rypens, F., Lawson, D.E.M., Pasteels, J.L., and Pochet, R., 1987b, Calbindin in vertebrate classes: Immunohistchemical localization and Western blot analysis. Gen. Comp. Endocr.. 65: 399–407.PubMedCrossRefGoogle Scholar
  20. Parmentier, M., and Vassart, G., 1988, HindIII RFLP on chromosome 8 detected with a Calbindin 27kDa cDNA probe, HBSC21. Nucl. Acids Res., 16: 9373.PubMedCrossRefGoogle Scholar
  21. Parmentier, M., De Vijlder, J.J.M., Muir, E., Szpirer, C., Islam, M.Q.,Geurts van Kessel, A., Lawson, D.E.M., and Vassart, G., 1989, The human calbindin 27 kDa gene: structural organization of the 5’ and 3’ regions, chromosomal assignment, and restriction fragment length polymorphism. Genomics. 4: 309–319.PubMedCrossRefGoogle Scholar
  22. Pochet, R., Parmentier, M., Lawson, D.E.M., and Pasteels, J.L., 1985, Rat brain synthesizes two ’Vitamin D-dependent’ calcium binding proteins. Brain Res., 345: 251–256.PubMedCrossRefGoogle Scholar
  23. Pochet, R., Pipeleers, D.G., and Malaisse, W.J., 1987, Calbindin D27kDa: preferential localization in non-B cells of the rat pancreas. Biol Cell. 61:155–161.PubMedCrossRefGoogle Scholar
  24. Rogers, J., 1987, Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J. Cell Biol., 105:1343–1353.PubMedCrossRefGoogle Scholar
  25. Roth, J., Baetens, D., Norman, A.W., and Garcia-Segura, L.-M., 1981, Specific neurons in chick central nervous system stain with an antibody against chick intestinal vitamin D-dependent calcium-binding protein. Brain Res., 222: 452–457.PubMedCrossRefGoogle Scholar
  26. Sanger, F., Nicklen, S., and Coulson, A.R., 1977, DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74: 5463–5467.PubMedCrossRefGoogle Scholar
  27. Takagi, T., Nojiri, M., Konishi, K., Maruyama, K., and Nonomura, Y., 1986, Amino acid sequence of vitamin D -dependent calcium-binding protein from bovine brain. FEBS Lett., 201: 41–45.PubMedCrossRefGoogle Scholar
  28. Verstappen, A., Parmentier, M., Chirnoaga, M., Lawson, D.E.M., Pasteels, J.L., and Pochet, R., 1988, Vitamin D-dependent calcium-binding protein immunoreactivity in human retina. Ophtalmic Res., 18: 209–214.CrossRefGoogle Scholar
  29. Wasserman, R.H., and Taylor, A.N., 1966, Vitamin D3-induced calcium-binding protein in chick intestinal mucosa. Science 152: 791–793.PubMedCrossRefGoogle Scholar
  30. Wells, R.D., 1988, Unusual DNA structures. J. Biol. Chem., 263:1095–1098.PubMedGoogle Scholar
  31. Wilson, P.W., Harding, M., and Lawson, D.E.M., 1985, Putative amino acid sequence of chick calcium-binding protein deduced from a complementary DNA sequence. Nucl. Acids Res., 13: 8867–8881.PubMedCrossRefGoogle Scholar
  32. Wilson, P.W., Rogers, J., Harding, M., Pohl, V., Pattyn, G., and Lawson, D.E.M., 1988, Structure of chick chromosomal genes for calbindin and calretinin. J. Mol. Biol., 200: 615–625.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Marc Parmentier
    • 1
  1. 1.ULB Campus ERASMEI.R.I.B.H.N.BruxellesBelgium

Personalised recommendations