Calpain I Activates Ca2+ Transport by the Human Erythrocyte Plasma Membrane Calcium Pump

  • Kevin K. W. Wang
  • Basil D. Roufogalis
  • Antonio Villalobo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 269)


Many extracellular signals, including hormones, exert their effects on cells by elevating free Ca2+ concentration. For this reason, it is important for a resting cell to maintain a submicromolar concentration of free Ca2+ in the cytosol. In red cells, this function is largely provided by the plasma membrane-bound Ca2+- translocating ATPase. Both Ca2+ translocating and ATP-hydrolytic activities of this enzyme are stimulated by calmodulin (CaM) via reversible binding (see Al-Jobore et al., 1981). We recently reported an irreversible means of activating the ATP-hydrolytic activity of the enzyme, involving the cytosolic Ca2+ -dependent protease (calpain I) (Wang et al., 1988a; 1988b). However, it is not yet established whether the calcium translocating activity of the enzyme is also activated by calpain I. In this study, we further examine the effect of calpain I on the liposome-reconstituted calcium pump.


Relative Molecular Mass Calcium Pump Dependent Protease Submicromolar Concentration Pump Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Jobore, A., Mauldin, D., Minocherhomjee, A.M., and Roufogalis, B.D., 1981, in: “Erythrocyte Membranes 3: Recent Clinical and Experimental Advances”, W.C. Kruckeberg, J.W. Eaton, and G.J. Brewer, eds., pp 757–773, Alan R. Liss, New York.Google Scholar
  2. Au, K.S., 1987. Biochim. Biophys. Acta, 905:273–278.PubMedCrossRefGoogle Scholar
  3. Haaker, H., and Racker, E., 1979. J. Biol. Chem., 254:6598–6602.PubMedGoogle Scholar
  4. Niggli, V., Adunyah, E.S., Penniston, J.T., and Carafoli, E., 1981. J. Biol. Chem., 256:395–401.PubMedGoogle Scholar
  5. Verma, A.K., Filoteo, A.G., Stanford, D.R., Wieben, E.D., Penniston, J.T., Strehler, E.E., Fischer, R., Heim, R., Vogel, G., Mathews, S., Strehler-Page M.-A., James, P., Vorherr, T., Krebs, J., and Carafoli, E., 1988, J. Biol. Chem., 263:14152–14159.PubMedGoogle Scholar
  6. Villalobo, A., and Roufogalis, B.D., 1986. J. Membrane Biol., 93:249–258.CrossRefGoogle Scholar
  7. Wang, K.K.W., Villalobo, A., and Roufogalis, B.D., 1988a. Arch. Biochem. Biophys., 260:696–704.PubMedCrossRefGoogle Scholar
  8. Wang, K.K.W., Roufogalis, B.D., and Villalobo, A., 1988b. Arch. Biochem. Biophys., 267:317–327.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Kevin K. W. Wang
    • 1
  • Basil D. Roufogalis
    • 1
  • Antonio Villalobo
    • 2
  1. 1.Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouverCanada
  2. 2.Instituto de Investigaciones BiomedicasC.S.I.C.MadridSpain

Personalised recommendations