Calmodulin and Calbindin in Pancreatic Islet Cells

  • W. J. Malaisse
  • F. Blachier
  • R. Pochet
  • B. Manuel y Keenoy
  • A. Sener
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 269)


The process of insulin release evoked by D-glucose and other nutrient secretagogues is triggered by an increase in cytosolic Ca2+ activity. However, some other insulinotropic agents may stimulate insulin release at a close-to-basal concentration of cytosolic ionized calcium. The control of cytosolic Ca2+ concentration depends not solely on the rate of Ca2+ entry into the cell through voltage-sensitive channels and Ca2+ exit via Na+-Ca2+ countertransport or active Ca2+ pumping, but also on the subcellular distribution of Ca2+, as dependent, for instance, on both Ca2+-ATPase activity and inositol 1,4,5-triphosphate-sensitive release in microsomes and calcium accumulation in mitochondria. Calmodulin and calbindin were both identified in pancreatic islet cells. Activation of adenylate cyclase by calcium-calmodulin may account for the increased production of cyclic AMP in islets stimulated by nutrient secretagogues. Calbindin is present in both normal and tumoral islet cells, and might participate to the alteration of islet function encountered in vitamin D-deprived or repleted rats. However, no target enzyme for calbindin was yet identified in islet cells. Independently of the role of calcium-binding regulatory proteins, the mitochondrial accumulation of calcium may account in part at least, for the preferential stimulation of mitochondrial oxidative events in the process of nutrient-stimulated insulin release.


Islet Cell Adenylate Cyclase Insulin Release Pancreatic Islet Cell Tumoral Islet Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.J. Malaisse, Cellular calcium : secretion of hormones, in: Calcium in Human Biology, B.E.C. Nordin, ed., Springer-Verlag, London (1988).Google Scholar
  2. 2.
    I. Valverde, A. Vandermeers, R. Anjaneyulu, and W.J. Malaisse, Calmodulin activation of adenylate cyclase in pancreatic islets. Science 206:225 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    I. Valverde, and W.J. Malaisse, Calmodulin and pancreatic B-cell function, Experientia 40:1061 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    I. Valverde, P. Garcia-Morales, M. Ghiglione, and W.J. Malaisse, The stimulus-secretion coupling of glucose-induced insulin release. LIII. Calcium-dependency of the cyclic AMP response to nutrient secretagogues. Horm. Metab. Res. 15:62 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Labriji-Mestaghanmi, B. Billaudel, P.E. Garnier, W.J. Malaisse, and B.C.J. Sutter, Vitamin D and pancreatic islet function. I. Time-course for changes in insulin secretion and content during vitamin D deprivation and repletion. J. Endocrinol. Invest. 11:577 (1988).PubMedGoogle Scholar
  6. 6.
    B. Billaudel, H. Labriji-Mestaghanmi, B.C.J. Sutter, and W.J. Malaisse, Vitamin D and pancreatic islet function. II. Dynamics of insulin release and cationic fluxes. J. Endocrinol. Invest. 11:585 (1988).PubMedGoogle Scholar
  7. 7.
    R. Pochet, D.G. Pipeleers, and W.J. Malaisse, Calbindin D-27kDa : preferential localization in non-B islet cells of the rat pancreas. Biol. of the Cell 61:155 (1987).CrossRefGoogle Scholar
  8. 8.
    R. Pochet, F. Blachier, D.E.M. Lawson, and W.J. Malaisse, Presence of calbindin-D 28K in endocrine pancreatic tumoral cells of the RINm5F line. Int. J. Pancreatol. in press (1989).Google Scholar
  9. 9.
    A.W. Norman, B.J. Frankel, A.M. Heldt, and G.M. Grodsky, Vitamin D deficiency inhibits pancreatic secretion of insulin, Science 209:823 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    F.K. Gorus, W.J. Malaisse, and D.G. Pipeleers, Difference in glucose handling by pancreatic A and B cells. J. Biol. Chem. 259:1196 (1981).Google Scholar
  11. 11.
    M.E. Dunlop, and W.J. Malaisse, Phosphoinositide phosphorylation and hydrolysis in pancreatic islet cells membrane. Arch. Biochem. Biophys. 244:421 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    L. Best, A role for calcium in the breakdown of inositol phospholipids in intact and digitonin-permeabilized pancreatic islets. Biochem. J. 238:773 (1986).PubMedGoogle Scholar
  13. 13.
    F. Blachier, and W.J. Malaisse, Possible role of a GTP-binding protein in the activation of phospholipase C by carbamylcholine in tumoral insulin producing cells, Res. Commun. Chem. Pathol. Pharmacol. 58:237 (1987).PubMedGoogle Scholar
  14. 14.
    B. Pasteels, N. Miki, S. Hatakenaka, and R. Pochet, Immunohistochemical cross-reactivity and electrophoretic comigration between calbindin D-27kDa and visinin. Brain Res. 412:107 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    W.E.J.M. Ghijsen, C.H. Van Os, C.W. Heizmann, and H. Murer, Regulation of duodenal Ca2+ pump by calmodulin and vitamin D-dependent Ca2+ -binding protein. Am. J. Physiol. 251:G223 (1986).PubMedGoogle Scholar
  16. 16.
    M. Prentki, D. Janjic., and C.B. Wollheim, The regulation of extramitochondrial steady-state free Ca2+ concentration by rat insulinoma mitochondria, J. Biol. Chem. 258:7597 (1983).PubMedGoogle Scholar
  17. 17.
    T. Andersson, C. Betsholtz, and B. Hellman, Granular calcium exchange in glucose-stimulated pancreatic B-cells. Biomed. Res. 3:29 (1982).Google Scholar
  18. 18.
    T. Andersson, P.-O Berggren, E. Gylfe and B. Hellman, Amounts and distribution of intracellular magnesium and calcium in pancreatic B-cells. Acta Physiol. Scand. 114:235 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    W.J. Malaisse, and A. Sener, The redox potential, in: Energetics of Secretion Response, J.W.N. Akker-man, ed., CRC Press, Boca Raton (1988).Google Scholar
  20. 20.
    A. Sener, and W.J. Malaisse, Stimulation by D-glucose of mitochondrial oxidative events in islet cells, Biochem. J. 246:89 (1987).PubMedGoogle Scholar
  21. 21.
    A. Sener, J. Rasschaert, D. Zähner and, W.J. Malaisse, Hexose metabolism in pancreatic islets. Stimulation by D-glucose of [2-3H] glycerol detritiation. Int. J. Biochem 20:595 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Sener, F. Blachier, and W.J. Malaisse, Crabtree effect in tumoral pancreatic islet cells, J. Biol. Chem.263:1904 (1988).PubMedGoogle Scholar
  23. 23.
    W.J. Malaisse, and A. Sener, Hexose metabolism in pancreatic islets. Feedback control of D-glucose oxidation by functional events, Biochim. Biophys. Acta 971:246 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • W. J. Malaisse
    • 1
  • F. Blachier
    • 1
  • R. Pochet
    • 2
  • B. Manuel y Keenoy
    • 1
  • A. Sener
    • 1
  1. 1.Laboratory of Experimental MedicineBrussels Free UniversityBrusselsBelgium
  2. 2.Laboratoire d’ Histologie, Faculté de MédecineUniversité Libre de BruxellesBruxellesBelgique

Personalised recommendations