Steroid-Induced Proteins of the Primate Oviduct and Uterus: Potential Regulators of Reproductive Function

  • Asgerally T. Fazleabas
  • Harold G. Verhage
  • Stephen C. Bell
Part of the Reproductive Biology book series (RBIO)


The biological requirements of the mammalian conceptus during the initial stages of development must be met by oviductal and uterine secretions since they constitute the primary environmental contact between the developing embryo and its mother prior to implantation. Both the mammalian oviduct and uterine endometrium are target tissues for the ovarian steroids and each responds by undergoing cyclic changes in morphology and secretory activity. These cyclic changes prepare the oviduct and uterus to receive and nourish the gametes during fertilization, early embryonic development and during the implantation process. Secretory products from these two tissue compartments are necessary to maintain gamete viability, however, their specific role in primate reproduction has yet to be determined. Studies to determine critical reproductive events during these very early stages of embryonic development and pregnancy obviously are very difficult, if not impossible, to perform in humans. Therefore, we have attempted to utilize the baboon (Papio anubis) as a non-human primate model to identify hormonally regulated secretory proteins of the oviduct and uterus and to determine similarities and dissimilarities in the secretory profile of these two tissue compartments in the baboon and human. This chapter summarizes our findings which suggests potential paracrine roles for specific, hormonally regulated proteins of the baboon and human oviduct and uterus.


Menstrual Cycle Glandular Epithelium Human Endometrium Uterine Endometrium Human Amniotic Fluid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basha S.M.M., Bazer F.W., Giesert R.D. and Roberts R.M. 1980. Progesterone-induced uterine secretions in pigs. Recovery from pseudopregnant and unilaterally pregnant gilts. J. Anim. Sci. 50:113.PubMedGoogle Scholar
  2. Baxter R.C., Martin J.L. and Wood M.H. 1987. Two immunoactive binding proteins for insulin-like growth factors in human amniotic fluid: relationship to fetal maturity. J. Clin. Endocrinol. Metab. 65:423.PubMedCrossRefGoogle Scholar
  3. Bayard F., Damilano S., Robel P. and Baulieu E.E. 1978. Cytoplasmic and nuclear estradiol and progesterone receptors in human endometrium. J. Clin. Endocrinol. Metab. 46:635.PubMedCrossRefGoogle Scholar
  4. Bell S.C. 1986. Secretory endometrial and decidual proteins: studies and clinical significance of a maternally derived group of pregnancy-associated serum proteins. Human Reprod. 1:129.Google Scholar
  5. Bell S.C. 1988. Secretory endometrial/decidual proteins and their function in early pregnancy. J. Reprod. Fertil. Supp. 36:109.Google Scholar
  6. Bell S.C. and Bohn H. 1986. Immunochemical and biochemical relationship between human pregnancy-associated secreted endometrial α1-and α2-globulins (α1-and α2-PEG) and soluble placental proteins 12 and 14 (PP12 and PP14). Placenta 7:283.PubMedCrossRefGoogle Scholar
  7. Bell S.C., Fazleabas A.T. and Verhage H.G. 1989. Comparative aspects of secretory proteins of the endometrium and decidua in human and non-human primates — primate models for the study of the function of the endometrium and decidua, “Serono Symposium on Blastocyst Implantation” Plenum Press, N.Y. (in press).Google Scholar
  8. Bell S.C., Hales M.W., Patel S.R., Kirwan P.H. and Drife J.O. 1985. Protein synthesis and secretion by the human endometrium and decidua during early pregnancy. Br. J. Obst. Gynecol. 92:793.CrossRefGoogle Scholar
  9. Bell S.C., Patel S., Kirwan P.H. and Drife J.O. 1986a. Protein synthesis and secretion by the human endometrium during the menstrual cycle and effect of progesterone in vitro. J. Reprod. Fertil. 77:221.PubMedCrossRefGoogle Scholar
  10. Bell S.C., Patel S., Hales M.W., Kirwan P.H. and Drife J.O. 1986b. Immunochemical detection and characterization of pregnancy associated endometrial α1-and α2-globulins secreted by human endometrium and decidua. J. Reprod. Fertil. 74:261.Google Scholar
  11. Bell S.C. and Smith S. 1988. The endometrium as a paracrine organ. In: “Contemporary Obstetrics and Gynecology” (G.V.P. Chamberlain, ed.), Butterworths Scientific Ltd., London, p.273.Google Scholar
  12. Bohn H. 1985. Biochemistry of placental proteins. In: “Proteins of the Placenta. 5th Int. Congress on Placental Proteins”, (P. Bischof and A. Klopper, eds.), Karger, Basel, p.1.Google Scholar
  13. Brenner R.M., Carlise K.S., Hess D.L., Sandow B.A. and West N.B. 1983. Morphology of the oviducts and endometria of Cynomolgus macaques during the menstrual cycle. Biol. Reprod. 29:1989.CrossRefGoogle Scholar
  14. Brenner R.M. and Maslar I.A. 1988. The primate oviduct and endometrium. In: “The Physiology of Reproduction, Vol. 1”, (E. Knobil and J.D. Neill, eds.), Raven Press, N.Y., p. 303.Google Scholar
  15. Brenner R.M., West N.B., Norman R.L., Sandow B.A. and Verhage H.G. 1979. Progesterone suppression of the estradiol receptor in the reproductive tract of macaques, cats and hamsters. In: “Steroid Hormone Receptors Systems”, (W.W. Leavitt and J.H. Clark, eds.), Plenum Press, N.Y., p.173.Google Scholar
  16. Busby W.H., Jr., Klapper D.G. and Clemmons D.R. 1988. Purification of a 31,000-dalton insulin-like growth factor binding protein from human amniotic fluid. J. Biol. Chem. 263:14203.PubMedGoogle Scholar
  17. Cornillie F.J., Lauweryns J.M. and Brosens I.A. 1985. Normal human endometrium; an ultrastructural survey. Gynecol. Obstet. Invest. 20:113.PubMedCrossRefGoogle Scholar
  18. Drop S.L.S., Kortleve D.J. and Guyda H.J. 1984. Isolation of a somatomedin-binding protein from pre-term amniotic fluid. Development of a radioimmunoassay. J. Clin. Endocrinol. Metab. 59:899.PubMedCrossRefGoogle Scholar
  19. Elgin R.G., Busby W.H., Jr. and Clemmons D.R. 1987. An insulin-like growth factor (IGF) binding protein enhances the biologic response to IGF. Proc. Natl. Acad. Sci. (USA) 84:3254.CrossRefGoogle Scholar
  20. Fant M., Munro H. and Moses A. 1986. An autocrine/paracrine role for insulin-like growth factors in the regulation of human placental growth. J. Clin. Endocrinol. Metab. 63:499.PubMedCrossRefGoogle Scholar
  21. Fazleabas A.T., Bazer F.W. and Roberts R.M. 1982, Purification and properties of a progesterone-induced plasmin/trypsin inhibitor from uterine secretions of pigs and its immunocytochemical localization in the pregnant uterus. J. Biol. Chem. 257:6886.PubMedGoogle Scholar
  22. Fazleabas A.T., Jaffe R.C., Verhage H.G., Waites G.T. and Bell S.C. 1989a. An insulin-like growth factor binding protein (IGF-BP) in the baboon (Papio anubis) endometrium: synthesis, immunocytochemical localization and hormonal regulation. Endocrinology 124:2321.PubMedCrossRefGoogle Scholar
  23. Fazleabas A.T., Miller J.B. and Verhage H.G. 1988. Ssynthesis and release of estrogen-and progesterone-dependent proteins by the baboon (Papio anubis) uterine endometrium. Biol. Reprod. 39:729.PubMedCrossRefGoogle Scholar
  24. Fazleabas A.T. and Verhage H.G. 1986. The detection of oviduct-specific protein in the baboon (Papio anubis). Biol. Reprod. 35:455.PubMedCrossRefGoogle Scholar
  25. Fazleabas A.T. and Verhage H.G. 1987a. Synthesis and release of polypeptides by the baboon (Papio anubis) uterine endometrium in culture. Biol Reprod. 37:979.PubMedCrossRefGoogle Scholar
  26. Fazleabas A.T. and Verhage H.G. 1987b. A simple technique for sampling the uterine cavity of the baboon. Theriogenology 27: 645.PubMedCrossRefGoogle Scholar
  27. Fazleabas A.T., Verhage H.G., Waites G.T. and Bell S.C. 1989b. Characterization of an insulin-like growth factor binding protein (IGF-BP), analogous to human pregnancy-associated secreted endometrical α1-globulin (α1-PEG), in decidua of baboon (Papio anubis) placenta. Biol Reprod. 40:73.CrossRefGoogle Scholar
  28. Fritz M.A., Westfahl P.K. and Graham R.L. 1987. The effect f luteal phase estrogen antagonism on endometrial development and luteal function in women. J. Clin. Endocrinol. Metab. 65:1006.PubMedCrossRefGoogle Scholar
  29. Gandolfi F. and Moor R.M. 1987. Stimulation of early embryonic development in the sheep by co-culture with oviduct epithelial cells. J. Reprod. Fertil. 81:23.PubMedCrossRefGoogle Scholar
  30. Grundmann U., Abel K-J., Bohn H., Lobermann H., Lottspeich F. and Kupper H. 1988. Characterization of cDNA encoding human placental anticoagulant protein (PP4): homology with the lipocortin family. Proc. Natl. Acad. Sci. (USA) 85:3708.CrossRefGoogle Scholar
  31. Healy D.L. 1984. The clinical significance of endometrial prolactin. Aust. and N.Z. J. Obstet. Gynecol. 24:111.CrossRefGoogle Scholar
  32. Healy D.L. and Hodgen G.D. 1983. The endocrinology of human endometrium. Obstet. Gynecol. Survey 38:509.CrossRefGoogle Scholar
  33. Hearn J.P. 1986. The embryo-maternal dialogue during early pregnancy in primates. J. Reprod. Fertil. 76:809.PubMedCrossRefGoogle Scholar
  34. Heffner L.J., Iddenden D.A., and Lyttle R.C. 1986. Electrophoretic analyses of secreted human endometrial proteins: identification and characterization of luteal phase prolactin. J. Clin. Endocrinol. Metab. 62:1288.PubMedCrossRefGoogle Scholar
  35. Hintz R.L. 1984. Plasma forms of somatomedin and the binding protein phenomena. Clinics Endocrinol. Metab. 13:31.CrossRefGoogle Scholar
  36. Jaffe R.C., Stevens D.M. and Verhage H.G. 1985. The effects of estrogen and progesterone on glycogen and the enzymes involved in its metabolism in the cat uterus. Steroids 45:453.PubMedCrossRefGoogle Scholar
  37. Jones H.W. Jr. 1983. Factors influencing implantation and maintenance of pregnancy following embryo transfer. In: “Fertilization of the Human Egg In Vitro”, (H.M. Beier and H.R. Linder, eds.), Springer-Verlag, Berlin, p.293.CrossRefGoogle Scholar
  38. Joshi S.G., Ebert K.M. and Swartz D.P. 1980. Detection and synthesis of a progesterone-dependent protein in the human endometrium. J. Reprod. Fertil. 59:273.PubMedCrossRefGoogle Scholar
  39. Julkunen M., Raikar R.S., Joshi S.G., Bohn H., and Seppala M. 1986. Placental protein 14 and progesterone-dependent endometrial protein are immunologically indistinguishable. Human Reprod. 1:7.Google Scholar
  40. Julkunen M., Seppala M. and Janne O.A. 1988. Complete amino acid sequence of human placental protein 14: a progesterone-regulated uterine protein homologous to β-lactoglobulins. Proc. Natl. Acad. Sci. (USA) 85:8845.CrossRefGoogle Scholar
  41. Kapur R.P. and Johnson L.V. 1985. An oviductal fluid glycoprotein associated with ovulated mouse ova and early embryos. Develop Biol. 112:89.PubMedCrossRefGoogle Scholar
  42. Kapur R.P. and Johnson L.V. 1986. Selective sequestration of an oviductal fluid glycoprotein the perivitelline space of mouse oocytes and embryos. J. Exp. Zool. 238:249.PubMedCrossRefGoogle Scholar
  43. Leveille M-C, Roberts K.D., Chevalier S., Chapdelaine A. and Bleau G. 1987. Uptake of an oviductal antigen by the hamster zona pellucida. Biol. Reprod. 36:227.PubMedCrossRefGoogle Scholar
  44. Levy C., Robel P., Gautray J.P., De Brux J., Verma U., Descomps B., Baulieu E.E. and Eychenne B. 1980. Estradiol and progesterone receptors in human endometrium: normal and abnormal menstrual cycles and early pregnancy. Am. J. Obstet. Gynecol. 136:646.PubMedGoogle Scholar
  45. MacLaughlin D.T. and Richardson G.S. 1983. Analysis of human uterine luminal fluid proteins following radiolabelling by reductive methylation: comparison of proliferative and secretory phase samples. Biol. Reprod. 29:783.CrossRefGoogle Scholar
  46. Maslar I.A. and Ansbacher R. 1986. Effects of progesterone on decidual prolactin production by organ cultures of human endometrium. Endocrinology 118:2101.CrossRefGoogle Scholar
  47. Maslar I.A., Lazur J.J., Normamn R.L. and Spies H.G. 1988. Amniotic fluid and decidual prolactin during pregnancy in rhesus macaques. Biol. Reprod. 38:1067.PubMedCrossRefGoogle Scholar
  48. Odor D.L., Gaddum-Rosse, P. and Rumery, R.E., 1983, Secretory cells of the oviduct of the pig tailed macaque, Macaca nemestrina, during the menstrual cycle and after estrogen treatment. Am. J. Anat. 1166:149.CrossRefGoogle Scholar
  49. Oliphant G. and Ross P.R. 1982. Demonstration of production and isolation of three sulfated glycoproteins from the rabbit oviduct. Biol Reprod. 26:537.PubMedCrossRefGoogle Scholar
  50. Oliphant G., Reynolds A.B., Smith P.F., Ross P.R. and Marta J.S. 1984. Immunochemical localization of hormone-induced synthesis of the sulfated oviductal glycoproteins. Biol. Reprod. 31:165.PubMedCrossRefGoogle Scholar
  51. Povoa G., Enberg G., Jomvall H. and Hall K. 1984. Isolation and characterization of a somatomedin-binding protein from mid-term human amniotic fluid. Eur. J. Biochem. 144:199.PubMedCrossRefGoogle Scholar
  52. Ramsey E.M., Houston M.L. and Harris J.W.S. 1976. Interactions of the trophoblast and maternal tissues in three closely related primate species. Am. J. Obstet. Gynecol. 124:647.PubMedGoogle Scholar
  53. Riddick D.H. and Daly D.C. 1982. Decidual prolactin production in human gestation. Seminars in Perinatol. 6:229.Google Scholar
  54. Riddick D.H. 1985. Regulation and physiological relevance of non-pituitary prolactin In: “Prolactin Basic and Clinical Correlates,” (R.M. MacLeod, M.O. Thomes and V. Scapagrini, eds.), Liviana Press, Padova, p.463.Google Scholar
  55. Rutanen E-M., Koistinen R., Sjoberg J., Julkunen M., Wahlstrom T., Bohn H. and Seppala M. 1986. Synthesis of placental protein 12 by the human endometrium. Endocrinology 118:1067.PubMedCrossRefGoogle Scholar
  56. Speroff L., Glass R.H. and Kase N.G. 1979. Induction of ovulation with clomiphene and human menopausal gonadotrophins. In: “Clinical Gynecological Endocrinology and Infertility,” (L. Speroff, R.H. Glass and N.G. Kase, eds.), The Williams and Wilkins Co., Baltimore, p.214.Google Scholar
  57. Strinden S.T. and Shapiro S.S. 1983. Progesterone-altered secretory proteins from cultured human endometrium. Endocrinology 112:862.PubMedCrossRefGoogle Scholar
  58. Sutton R., Nancarrow C.D. and Wallace A.L.C. 1986. Estrogen and seasonal effects on the production of an estrus-associated glycoprotein in oviductal fluid of sheep. J. Reprod. Fertil. 77:645.PubMedCrossRefGoogle Scholar
  59. Sylvan P.E., MacLaughlin D.T., Richardson G.S., Scully R.E. and Nikrui N. 1981. Human uterine fluid proteins associated with secretory phase endometrium: progesterone-induced proteins? Biol. Reprod. 24:423.PubMedCrossRefGoogle Scholar
  60. Tyson J.E. 1982. The evolutionary role of prolactin in mammalian osmoregulation: effects on fetoplacental hydromineral transport. Seminars in Perinatol. 6:216.Google Scholar
  61. Underwood L.E. and D’Ercole A.J. 1984. Insulin and insulin-like growth factors/ somatomedins in fetal and neonatal development. Clinics Endocrinol. Metab. 13:69.CrossRefGoogle Scholar
  62. Underwood L.E., D’Ercole A.J., Clemmons D.R. and Van Wyk J.J. 1986. Paracrine functions of somatomedins. Clinics Endocrinol. Metab. 15:59.CrossRefGoogle Scholar
  63. Verhage H.G., Bareither M.L., Jaffe R.C. and Akbar M. 1979. Cyclic changes in ciliation, secretion and cell height of the oviductal epithelium in women. Am. J. Anat. 156:505.PubMedCrossRefGoogle Scholar
  64. Verhage H.G., Boice M.L., Mavrogianis P., Donnelly K. and Fazleabas A.T. 1989. Immunological characterization and immunocytochemical localization of oviduct-specific glycoproteins in the baboon (Papio anubis). Endocrinology 124:2464.PubMedCrossRefGoogle Scholar
  65. Verhage H.G. and Fazleabas A.T. 1988. The in vitro synthesis of estrogen-dependent proteins by the baboon (Papio anubis) oviduct. Endocrinology 123: 552.PubMedCrossRefGoogle Scholar
  66. Verhage H.G., Fazleabas A.T. and Donnelly K. 1988. The in vitro synthesis and release of proteins by the human oviduct. Endocrinology 122:1639.PubMedCrossRefGoogle Scholar
  67. Verhage H.G. and Jaffe R.C. 1986. Hormonal control of the mammalian oviduct; morphological features and the steroid receptor systems. In: “The Fallopian Tube: Basic Studies and Clinical Contributions”, (A.M. Siegler, ed.), Futura, N.Y. p.107.Google Scholar
  68. Verma V. 1983. Ultrastructural changes in human endometrium at different phases of the menstrual cycle an their functional significance. Gynecol. Obstet. Invest. 15:193.PubMedCrossRefGoogle Scholar
  69. Wahlstrom T. and Seppala M. 1984. Placental protein 12 (PP12) is induced in the endometrium by progesterone. Fertil. Steril. 41:781.PubMedGoogle Scholar
  70. Waites G.T., James R.F.L. and Bell S.C. 1988a. Immunohistological localization of human endometrial secretory proteins “pregnancy-associated endometrial secretory al-globulin (al-PEG), an insulin-like growth factor binding protein, during the menstrual cycle. J. Clin. Endocrinol. Metab. 67:1100.PubMedCrossRefGoogle Scholar
  71. Waites G.T., James R.F.L. and Bell S.C. 1988b. “Human pregnancy associated al-globulin,” an insulin-like growth factor binding protein-immunohistological localization in the decidua and placenta during pregnancy employing monoclonal antibodies. J. Endocrinol. 120:351.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Asgerally T. Fazleabas
    • 1
  • Harold G. Verhage
    • 1
  • Stephen C. Bell
    • 2
  1. 1.Department of Obstetrics and GynecologyUniversity of Illinois College of MedicineChicagoUSA
  2. 2.Departments of Obstetrics and Gynecology and BiochemistryUniversity of LeicesterLeicesterUK

Personalised recommendations