Advertisement

The Role of Stromal-Epithelial Interactions in the Regulation of Growth and Differentiation in Adult Epithelial Cells

  • Gerald R. Cunha
  • Stephen J. Higgins
  • Annemarie A. Donjacour
  • Norio Hayashi
  • Peter Young
Part of the Reproductive Biology book series (RBIO)

Abstract

There is general agreement that paracrine influences are of paramount importance during embryonic and fetal life. From studies on amphibians it has been shown that the differentiation of mesodermal tissue results from an influence of cells of the vegetal pole upon cells of the animal pole (Nieuwkopp, 1973). Once formed, the mesoderm is involved in inducing neural development and in specifying the cranial to caudal pattern on the embryonic axes such that head structures form cranially and tail structures caudally. During subsequent organogenesis, a series of secondary inductions between mesenchyme and epithelium are involved in the morphogenesis, growth and functional cytodifferentiation of a variety of organ systems (Saxen et al., 1980; Ekblom, 1984; Haffen et al., 1987; Kedinger et al., 1986; Sawyer et al., 1983; Saunders and Gasseling, 1968; Kratochwil, 1987; Rollar, 1972, 1987).

Keywords

Androgen Receptor Dermal Papilla Mouse Mammary Gland Urogenital Sinus Prostatic Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer E.A., Gordon J.M., Reddick M.E. and Eisen A.Z. 1977. Quantitation and immunocytochemical localization of human skin collagenase in basal cell carcinoma. J. Invest. Derm. 69:363.PubMedCrossRefGoogle Scholar
  2. Bernimoulin J.P. and Schroeder H.E. 1980. Changes in the differentiation pattern of oral mucosal epithelium following heterotopic connective tissue transplantation in man. Path. Res. Pract. 166:290.PubMedCrossRefGoogle Scholar
  3. Billingham, R.E. and Silvers, W.K. 1968. Dermoepidermal interactions and epithelial specificity. In: Epithelial-Mesenchymal Interactions (R. Fleischmajer and Billingham R.E., eds.), Williams and Wilkins, Baltimore, p. 252.Google Scholar
  4. Bissell M.J., Lee E.Y.H., Li M., Chen L. and Hall G. 1987. Role of extracellular matrix and hormones in modulation of tissue-specific functions in culture: mammary gland as a model for endocrine sensitive tissues. In: Benign Prostatic Hyperplasia: II (H. Rodgers, S. Coffey, G. Cunha, T. Grayhack, T. Hinman, Jr., and R. Horton, eds.), U.S. Government Printing Office, Washington, D.C., p. 39.Google Scholar
  5. Blum J.L., Zeigler M.E. and Wicha M.S. 1987. Regulation of rat mammary gene expression by extracellular matrix components. Exp. Cell Res. 173:322.PubMedCrossRefGoogle Scholar
  6. Botero A., Ruben M.P. and Kramer G.M. 1975. connective tissue grafts: Induction of formation of gingiva in mucosal receptor sites. J. Periodont. 46:630.Google Scholar
  7. Briggaman R.A. 1982. Epidermal-dermal interactions in adult skin. J. Invest. Dermatol. 79:21.CrossRefGoogle Scholar
  8. Chaudhuri S., Koprowska I. and Rowinski J. 1975. Different agglutin-ability of fibroblasts underlying various precursor lesions of human uterine cervical carcinoma. Cancer Research 35:2350.PubMedGoogle Scholar
  9. Chung L.W.K. and Cunha G.R. 1983. Stromal-epithelial interactions. II. Regulation of prostatic growth by embryonic urogenital sinus mesenchyme. Prostate 4:503.PubMedCrossRefGoogle Scholar
  10. Chung L.W.K., Matsuura J. and Runner M.N. 1984. Tissue interactions and prostatic growth. Biol. Reprod. 31:155.PubMedCrossRefGoogle Scholar
  11. Coffey D.S., Isaacs J.T. and Weisman R.M. 1979. Animal models for the study of prostatic cancer. In: Prostatic Cancer (G.P. Murphy, ed.), PSG Publishing, Boston, p. 89.Google Scholar
  12. Cohen S. 1965. The dermal papilla. In: Biology of the Skin and Hair Growth (A.G. Lyne and B.F. Short, eds.), Angus and Robertson, Sydney, p. 183.Google Scholar
  13. Cohen J. 1969. Dermis, epidermis and dermal papillae interacting. In: Advances in Biology of Skin: Hair Growth, Vol 9 (W. Montagna and R.L. Dobson, eds.), Pergamon Press, New York, p. 1.Google Scholar
  14. Cooke P.S., Fujii D.K. and Cunha G.R. 1987. Vaginal and uterine stroma maintain their inductive properties following primary culture. In Vitro Cellular and Develop. Biol. 23:159.CrossRefGoogle Scholar
  15. Cooper M. and Pinkus H. 1977. Intrauterine transplantation of rat basal cell carcinoma: A model for reconversion of malignant to benign growth. Cancer Research 37:2544.PubMedGoogle Scholar
  16. Cunha G.R. 1972. Epithelio-mesenchymal interactions in primordial gland structures which become responsive to androgenic stimulation. Anat. Rec. 172: 179.PubMedCrossRefGoogle Scholar
  17. Cunha G.R. 1975. Age-dependent loss of sensitivity of female urogenital sinus to androgenic conditions as a function of the epithelial-stromal interaction in mice. Endocrinology 95:665.CrossRefGoogle Scholar
  18. Cimba G.R. 1976. Stromal induction and specification of morphogenesis and cytodifferentiation of the epithelium of the Mullerian ducts and urogenital sinus during development of the uterus and vagina in mice. J. Exp. Zool., 196:361.CrossRefGoogle Scholar
  19. Cunha G.R. and Lung B. 1978. The possible influences of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J. Exp. Zool. 205:342.CrossRefGoogle Scholar
  20. Cunha G.R., Lung B. and Reese B.A. 1980a. Glandular epithelial induction by embryonic mesenchyme in adult bladder epithelium of balb/c mice. Invest. Urol. 17:302.PubMedGoogle Scholar
  21. Cunha G.R., Chung L.W.K., Shannon J.M. and Reese B.A. 1980b. Stomalepithelial interactions in sex differentiation. Biol. Reprod. 22:19.PubMedCrossRefGoogle Scholar
  22. Cunha G.R., Reese B.A. and Sekkingstad M. 1980c. Induction of nuclear androgen-binding sites in epithelium of the embryonic urinary bladder by mesenchyme of the urogenital sinus of embryonic mice. Endocrinology 107:1767.PubMedCrossRefGoogle Scholar
  23. Cunha G.R. and Chung L.W.K. 1981. Stromal-epithelial interactions: Induction of prostatic phenotype in urothelium of testicular feminized (Tfm/y) mice. J. Steroid Biochem. 14:1317.PubMedCrossRefGoogle Scholar
  24. Cunha G.R., Shannon J.M., Taguchi O., Fujii H. and Chung L.W.K. 1982. Mesenchymal-epithelial interactions in hormone-induced development. J. of Animal Science 55 (Suppl.):14.Google Scholar
  25. Cunha G.R., Fujii H., Neubauer B.L., Shannon M., Sawyer L.M. and Reese B.A. 1983a, Epithelial-mesenchymal interactions in prostatic development. I. Morphological observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. J. Cell Biol. 96:1662.PubMedCrossRefGoogle Scholar
  26. Cunha G.R., Chung L.W.K., Shannon J.M., Taguchi O. and Fujii H. 1983b. Hormone-induced morphogenesis and growth: Role of mesenchymal-epithelial interactions. Recent Prog. Horm. Res. 39:559.PubMedGoogle Scholar
  27. Cunha G.R. and Vanderslice K.D. 1984. Identification of species origin of mammalian cells in histological sections. Stain Technol. 59:7.PubMedGoogle Scholar
  28. Cunha G.R., Higgins S.J. and Young P.F. 1988. Seminal vesicle mesenchyme induces heterotypic Wolffian duct derived epithelium to express seminal vesicle differentiation and to secrete seminal vesicle secretory proteins. Endocrinology 122 (Suppl.):189.Google Scholar
  29. Daniel C.W. and DeOme K.B. 1965. Growth of mouse mammary glands in vivo after monolayer culture. Science 149:634.PubMedCrossRefGoogle Scholar
  30. Daniel C.W., DeOme K.B., Young J.T., Blair P.B. and Faulkin L.J. 1965. The in vivo life span of normal and neoplastic mouse mammary glands: A serial transplantation study. Proc. Natl. Acad. Sci. (USA) 61:52.Google Scholar
  31. Daniel C.W. and Young L.J. 1971. Influence of cell division on an aging process. Life span of mouse mammary epithelium during serial propagation in vivo. Exp. Cell Res. 65:27.PubMedCrossRefGoogle Scholar
  32. Dawe C.J., Morgan W.D. and Slatick M.S. 1968. Salivary gland neoplasms in the role of normal mesenchyme during salivary gland morphogenesis. In: Epithelial-Mesenchymal Interactions (R. Fleischmajer and R.E. Billingham, eds.), Williams and Wilkins Company, Baltimore, p. 295.Google Scholar
  33. De Cosse J.J., Gossens C.L., Kuzma J.F. and Unsworth B.R. 1975. Embryonic inductive tissues that cause histological differentiation of murine mammary carcinoma in vitro. J. Natl. Cancer Inst. 54:913.Google Scholar
  34. DeCosse J.J., Gossens C.L. and Kurma J.F. 1973. Breast Cancer: Induction of differentiation by embryonic tissue. Science 181:1057.PubMedCrossRefGoogle Scholar
  35. DeKlerk D.P. and Coffey D.S. 1978. Quantitative determination of prostatic epithelial and stromal hyperplasia by a new technique: Biomorphometrics. Invest. Urol. 16:240.PubMedGoogle Scholar
  36. Donn B.H. 1978. The free connective tissue autograft: A clinical and histologic wound healing study in humans. J. Periodont. 49:253.PubMedGoogle Scholar
  37. Drews U. and Drews U. 1977. Regression of mouse mammary gland anlagen in recombinants of Tfm and wild-type tissues: Testosterone acts via the mesenchyme. Cell 10:401.PubMedCrossRefGoogle Scholar
  38. Dunning W.F. 1963. Prostate cancer in the rat. Natl. Cancer Inst. Monogr. 12:351.PubMedGoogle Scholar
  39. Ekblom P. 1984. Basement membrane proteins and growth factors in kidney differentiation. In: The Role of Extracellular Matrix in Development (R.L. Trelstad, ed.), Alan R. Liss, Inc., New York, p. 173.Google Scholar
  40. Evan H.M. and Long A. 1920. The oestrous cycle in the rat. Anat. Rec. 18:241.Google Scholar
  41. Fujii H., Cunha G.R. and Norman J.T. 1982. The induction of adeno-carcinomatous differentiation in neoplastic bladder epithelium by an embryonic prostatic inductor. J. Urol. 128:858.PubMedGoogle Scholar
  42. Fusenig N.E. 1986. Mammalian epidermal cells in culture. In: Biology of the Integument, Vol. 2 Vertebrates (J. Bereiter-Hahn, A.G. Matolsy and K.S. Richards, eds.), Springer-Verlag, Berlin-Heidelberg, p. 409.Google Scholar
  43. Fusenig N.E., Breitkreutz D., Lueder M., Boukamp P. and Worst P.K.M. 1981. Keratinazation and structural organization in epidermal cell cultures. In: International Cell Biology (H.G. Schweiger, ed.), Springer-Verlag, Berlin-Heidelberg, p. 1004.Google Scholar
  44. Haffen K., Kedinger M., Simon P.M. and Raul F. 1987. Mesenchyme-dependent differentiation of epithelial progenitor cells in the gut. J. of Ped. Gastroenterol. Nutr. 6:14.CrossRefGoogle Scholar
  45. Hicks R.M. 1975. The mammalian urinary bladder: An accommodating organ. Biol. Rev. 50:215.PubMedCrossRefGoogle Scholar
  46. Higgins J., Young P., Brody R. and Cunha G.R. 1989. Induction of functional cytodifferentiation in the epithelium of tissue recombinants. I. Homotypic seminal vesicle recombinants. Development (in press).Google Scholar
  47. Hodges G.M., Hicks R.M. and Spacey G.D. 1977. epithelial-stromal interactions in normal and chemical carcinogen-treated adult bladder. Cancer Research 37:3720.PubMedGoogle Scholar
  48. Ibrahim L. and Wright E.A. 1977. Inductive capacity of irradiated dermal papillae. Nature 265:733.PubMedCrossRefGoogle Scholar
  49. Isaacs J.T. 1987. Development and characteristics of the available animal model systems for the study of prostatic cancer. In: Current Concepts and Approaches to the study of Prostate Cancer (D.S. Coffey, W.A. Gardner, Jr., N. Bruchovsky, M.I. Resnick, and J.P. Karr, eds.), Alan R. Liss, Inc., New York, p. 513.Google Scholar
  50. Jahoda C.A.B., Home K.A. and Oliver R.F. 1984. Induction of hair growth by implantation of cultured papilla cells. Nature 311:560.PubMedCrossRefGoogle Scholar
  51. Jost A. 1965. Gonadal hormones in the sex differentiation of the mammalian fetus. In: Organogenesis (R.L. DeHaan and H. Urpsrung, eds.), Holt, Rinehart and Winston, New York, p. 611.Google Scholar
  52. Karring T., Land N.P. and Loe H. 1975. The role of gingival connective tissue in determining epithelial differentiation. J. Periodontal Res. 10:1.PubMedCrossRefGoogle Scholar
  53. Kedinger M., Haffen K. and Simon-Assmann P. 1986. Control mechanisms in the ontogenesis of villus cells. In: Molecular and Cellular Basis of digestion (P. Desnuelle, H. Sjostrom and O. Noren, eds.), Elsevier, New York, p. 323.Google Scholar
  54. Kollar E.J. 1972. The development of the integument: Spatial, temporal and phylogenetic factors. Am. Zool. 12:125.Google Scholar
  55. Kollar E.J. 1986. Tissue interactions in development of teeth and related ectodermal derivatives. In: Developmental Biology A Comprehensive Synthesis (R.B.L. Gwatkin, ed.), Plenum Press, New York, p. 297.Google Scholar
  56. Kratochwil K. and Schwartz P. 1976. Tissue interaction in androgen response of the embryonic mammary rudiment of mouse: Identification of target tissue of testosterone. Proc. Natl. Acad. Sci. USA 73:4041.PubMedCrossRefGoogle Scholar
  57. Kratochwil K. 1987. Tissue combination and organ culture studies in the development of the embryonic mammary gland. In: Developmental Biology: A Comprehensive Synthesis. (R.B.L. Gwatkin, ed.), Plenum Press, New York, p. 315.Google Scholar
  58. Lasnitzki I. and Mizuno T. 1980. prostatic induction and interaction of epithelium and mesenchyme from normal wild-type and androgen-insensitive mice with testicular feminization. J. Endocrinol. 85:423.PubMedCrossRefGoogle Scholar
  59. Leblond C.P. and Cheng H. 1976. Identification of stem cells in the small intestine of the mouse. In: Stem cells of Renewing Cell Populations (A.B. Cairnie, P.K. Lala and D.G. Osmond, eds.), Academic Press, New York, p. 7.Google Scholar
  60. Lee E.Y.H., Parry G. and Bissell M.J. 1984. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrate. J. Cell Biol. 98:146.PubMedCrossRefGoogle Scholar
  61. Lillie F.R. and Wang H. 1943. Physiology of development of the feather. VI. The production and analysis of feather chimaerae in fowl. Physiol. Zool. 16: 1.Google Scholar
  62. Lillie J.H., MacCallum D.K. and Jepsen A. 1983. The role of defined extracellular matrices on the growth and differentiation of mammalian stratified squamous epithelium. In: Epithelial-Mesenchymal Interaction in Development (R.H. Sawyer and J.F. Fallon, eds.), Praeger., New York, p. 93.Google Scholar
  63. Lubahn D.B., Joseph D.R., Sullivan P.M., Willard H.F., French F.S., and Wilson E.M. 1988. Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240:327.PubMedCrossRefGoogle Scholar
  64. Mackenzie J.C., Dabelsteen E. and Roed-Peterson B. 1979. A method for studying epithelial-mesenchymal interactions in human oral mucosal lesions. Scand. J. Dent. Res. 87:234.PubMedGoogle Scholar
  65. McNeal J.E. 1978. Evolution of benign prostatic enlargement. Invest. Urology 15:340.Google Scholar
  66. Michalopoulos G. and Pitot H.C. 1975. Primary culture of parenchymal liver cells on collagen membranes. Exp. Cell Res. 94:70.PubMedCrossRefGoogle Scholar
  67. Neubauer B.L., Chung L.W.K., McCormick K., Taguchi, Thompson T.C. and Cunha G.R. 1983. Epithelial-mesenchymal interactions in prostatic development. II. Biochemical observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. J. Cell Biol. 96:1671.PubMedCrossRefGoogle Scholar
  68. Neubauer B.L., Best K.L., Hoover D.M., Slisz M.L., Van Frank R.M. and Goode R.L. 1986. Mesenchymal-epithelial interactions as factors influencing male accessory sex organ growth. Fed. Proc. 49:2618.Google Scholar
  69. Nieuwkoop P.D. 1973. The’ organisation centre’ of the amphibian embryo, its origin, spatial organization and morphogenetic action. Adv. Morphogen. 10:1.Google Scholar
  70. Norman J.T., Cunha G.R. and Sugimura Y. 1986. The induction of new ductal growth in adult prostatic epithelium in response to an embryonic prostatic inductor. Prostate 8:209.PubMedCrossRefGoogle Scholar
  71. Ohno S. 1979. Major Sex Determining Genes. Springer Verlag, New York.CrossRefGoogle Scholar
  72. Oishi K., Romijn J.C. and Schroeder F.H. 1981. The surface character of separated prostatic cells and cultured fibroblasts of prostatic tissue as determined by concanavalin-A hemadsorption. Prostate 2:11.PubMedCrossRefGoogle Scholar
  73. Oliver R.F. 1968. The regeneration of vibrissae—a model for the study of dermal-epidermal interactions. In: Epithelial-Mesenchymal Interactions. (R. Fleischmajer and R.E. Billingham, eds.), Williams and Wilkins Company, Baltimore, p. 267.Google Scholar
  74. Potten C.S. 1983. Stem cells in epidermis from the back of the mouse. In: Stem Cells: Their Identification and Characterization (C.S. Potten, ed.), Churchill Livingstone, New York, p. 155.Google Scholar
  75. Potten C.S. and Hendry J.H. 1983. Stem cells in murine small intestine. In: Stem Cells: Their Identification and Characterization (C.S. Potten, ed.), Churchill Livingstone, New York, p. 155.Google Scholar
  76. Price D. and Ortiz E. 1965. The role of fetal androgens in sex differentiation in mammals. In: Organogenesis (R.L. DeHaan and H. Ursprung, eds.), Holt, Rinehart and Winston, New York, p. 629.Google Scholar
  77. Reid L.M. and Jefferson D.M. 1984. Cell culture studies using extracts of extracellular matrix to study growth and differentiation in mammalian cells. In: Mammalian Cell Culture (J.P. Mather, ed.), Plenum Press, New York, p. 239.CrossRefGoogle Scholar
  78. Saiag P., Coulomb B., Lebreton C., Bell E. and Dubertret L. 1985. Psoriatic fibroblasts induce hyperproliferation of normal keratinocytes in a skin equivalent model in vitro. Science 230:669.PubMedCrossRefGoogle Scholar
  79. Sakakura T., Sakagami Y. and Nishizuka Y. 1979a. Persistence of responsiveness of adult mouse mammary gland to induction by embryonic mesenchyme. Develop. Biol. 72:201.PubMedCrossRefGoogle Scholar
  80. Sakakura T., Nishizuka T. and Dawe C.J. 1979b. Capacity of mammary fat pads of adult C3h/HeMs mice to interact morphogenetically with fetal mammary epithelium. J. Natl. Cancer Inst. 63:733.PubMedGoogle Scholar
  81. Sakakura T., Sakagami Y. and Nishizuka Y. 1979c. Acceleration of mammary cancer development by grafting of fetal mammary mesenchymes in C3H mice. Gann. 70:459.PubMedGoogle Scholar
  82. Sakakura T., Sakagami Y. and Nishizuka Y. 1981. Accelerated mammary cancer development by fetal salivary mesenchyme isografted to adult mouse mammary epithelium. J. Nat. Cancer Institute 66:953.Google Scholar
  83. Saunders J.W. and Gasseling M.T. 1968. Ectodermal-mesenchymal interactions in the origin of limb symmetry. In: Epithelial-Mesenchymal Interactions (R. Fleischmajer and R.E. Billingham, eds.), Williams and Wilkins, Baltimore, p. 78.Google Scholar
  84. Sawyer R.H. 1983. The role of epithelial-mesenchymal interactions in regulating gene expression during avian scale morphogenesis. In: Epithelial-Mesenchymal Interactions in Development (R.J. Sawyer and J.F. Fallon, eds.), Praeger, New York, p. 115.Google Scholar
  85. Saxen, L., Ekblom, P. and Thesleff, I. 1980. Mechanisms of morphogenetic cell interactions. In: Development in Mammals, Vol. 4 (M.H. Johnson, ed.), Elsevier, New York, p. 161.Google Scholar
  86. Shannon J.M., Cunha G.R. and Vanderslice K.D. 1981. Autoradiographic localization of androgen receptors in the developing urogenital tract and mammary gland. Anat. Rec. 199:232.Google Scholar
  87. Shannon J.M. and Cunha G.R. 1983. Autoradiographic localization of androgen binding in the developing mouse prostate. Prostate 4:367.PubMedCrossRefGoogle Scholar
  88. Shannon J.M. and Cunha G.R. 1984. Characterization of androgen binding and deoxyribonucleic acid synthesis in prostate-like structures induced in testicular feminized (Tfm/Y) mice. Biol. Reprod. 31:175.PubMedCrossRefGoogle Scholar
  89. Smolev J., Heston W.D.W., Scott W.W. and Coffey D.S. 1977a. Characterization of the Dunning R-3327-H prostatic adenocarcinoma: An appropriate animal model for prostatic cancer. Cancer Trt. Reps. 61:273.Google Scholar
  90. Smolev J.K., Coffey D.S. and Scott W.W. 1977b. Experimental models for the study of prostatic adenocarcinoma. J. Urol. 118:216.PubMedGoogle Scholar
  91. Spearman R.I.C. 1974. Alteration of keratinization in mouse ear epidermis in recombinant grafts with tail dermis. Acta Anat. 89:195.PubMedCrossRefGoogle Scholar
  92. Sugimura Y., Cunha G.R. and Donjacour A.A. 1986a. Morphogenesis of ductal networks in the mouse prostate. Biol. Reprod. 34:961.PubMedCrossRefGoogle Scholar
  93. Sugimura Y., Cunha G.R. and Bigsby R.M. 1986b. Androgenic induction of deoxyribonucleic acid synthesis in prostate-like glands induced in the urothelium of testicular feminized (Tfm/y) mice. Prostate 9:217.PubMedCrossRefGoogle Scholar
  94. Takeda H., Miguno T. and Lasnitzki I. 1985. Autoradiographic studies of androgen-binding sites in the rat urogenital sinus and postnatal prostate. J. Endocrinol. 104:87.PubMedCrossRefGoogle Scholar
  95. Thompson T.C. and Chung L.W.K. 1986. Regulation of overgrowth and expression of prostatic binding protein in rat chimeric prostate gland. Endocrinol. 118: 2437.CrossRefGoogle Scholar
  96. Wang H. 1943. The morphogenetic functions of the epidermal and dermal components of the papilla in feather regeneration. Physiol. Zool. 16: 325–350.Google Scholar
  97. Wasner G., Hennermann I. and Kratochwil K. 1983. Ontogeny of mesenchymal androgen receptors in the embryonic mouse mammary gland. Endocrinology 113: 1771.PubMedCrossRefGoogle Scholar
  98. Weisman R.M., Coffey D.S. and Scott W.W. 1977. Cell kinetics studies of prostatic cancer: adjuvant therapy in animal models. Oncology 34:133.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Gerald R. Cunha
    • 1
  • Stephen J. Higgins
    • 2
  • Annemarie A. Donjacour
    • 1
  • Norio Hayashi
    • 1
  • Peter Young
    • 1
  1. 1.Department of Anatomy and Reproductive Endocrinology CenterUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of BiochemistryUniversity of LeedsLeedsUK

Personalised recommendations