Advertisement

Oncogenic Transformation by Basic Fibroblast Growth Factor

  • Snezna Rogelj
  • Michael Klagsbrun
Part of the Reproductive Biology book series (RBIO)

Abstract

Several years ago Sporn and Todaro proposed autocrine growth stimulation as a mechanism for cellular transformation (Sporn and Todaro, 1980). According to this model, continuous proliferation occurs in a cell that possesses the cognate receptor for a growth factor that the cell secretes, (Long et al., 1985; Rosenthal et al., 1986; Finzi et al., 1987; Watanabe et al., 1987). This has been shown to be the cause of oncogenic conversion by numerous growth factors, including sis, epidermal growth factor (EGF), CSF-1, GM-CSF, and transforming growth factor α (TGF α) (Doolittle et al., 1983; Rosenthal et al., 1986; Stern et al., 1987; Waterfield et al., 1983; Wheeler et al., 1986).

Keywords

Signal Peptide Long Terminal Repeat Basic Fibroblast Growth Factor Bovine Aortic Endothelial Cell Type Alpha 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, J. A., Mergia, A., Whang, J.L., Tumolo, A., Friedman, J., Hjerrild, K.A., Gospodarowicz, D. and Fiddes, J.C. 1986. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science, 233:545PubMedCrossRefGoogle Scholar
  2. DelliBovi, P., Curatola, A.M., Kern, F.G., Greco, A., Ittmann, M. and Basilico, C. 1987. An oncogene isolated by transfection of Kaposi Sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell, 50:729CrossRefGoogle Scholar
  3. Doolittle, R.F., Hunkapiller, M.W., Hood, L.E., Devare, S.G., Robbins, K.C., Aaronson, S.A. and Antonaides, H.N. 1983. Simian sarcoma virus oncogene, v-sis, is derived from the gene (or genes) encoding a platelet derived growth factor. Science, 221:275PubMedCrossRefGoogle Scholar
  4. Finzi, E., Fleming, T., Segatto, D., Pennington, C.Y., Bringman, T.S., Derynck, R. and Aaronson, S.A. 1987. A human transforming growth factor type alpha coding sequence is not a direct-acting oncogene when overexpressed in NIH3T3 cells. Proc. Natl. Acad. Sci.(USA), 184:3733CrossRefGoogle Scholar
  5. Folkman, J. and Klagsbrun, M. 1987. Angiogenic factors. Science, 235:442PubMedCrossRefGoogle Scholar
  6. Hannik, M. and Donoghue, D. J. 1988. Autocrine stimulation by the v-sis gene product requires a ligand-receptor interaction at the cell surface. J. Cell Biol., 107:287.CrossRefGoogle Scholar
  7. Keating, M.T. and Williams L.T. 1987. Autocrine stimulation of intracellular PDGF receptors in v-sis transformed cells. Science, 239:914.CrossRefGoogle Scholar
  8. Klagsbrun, M., Sasse, J., Sullivan, R. and Smith, J.A. 1986. Human tumor cells synthesize an endothelial cell growth factor that is structurally related to basic fibroblast growth factor. Proc. Nat. Acad. Sci.(USA), 83:2448CrossRefGoogle Scholar
  9. Kurokawa, M., Doctrow, S. and Klagsbrun, M. 1989. Neutralizing antibodies inhibit binding of bFGF to its receptor but not to heparin. J. Biol. Chem., In press.Google Scholar
  10. Lang, R.A., Metcalf, D., Gough, N.M., Dunn, A.R. and Gonda, T.J. 1985. Expression of a hemopoietic growth factor cDNA in a factor-dependent cell line results in an autonomous growth and turnorigenicity. Cell, 43:531PubMedCrossRefGoogle Scholar
  11. Leal, F., Williams, L.T., Robbins, K.C. and Aaronson, S.A. 1985. Evidence that the v-sis gene product transforms by interaction with the receptor for platelet-derived growth factor. Science, 230:327PubMedCrossRefGoogle Scholar
  12. Loh, D.Y., Bothwell, A.L.M., White-Scharf, M.E., Imanishi-Kari, T. and Baltimore, D. 1983. Molecular basis of a mouse strain-specific anti-hapten response. Cell, 33:85PubMedCrossRefGoogle Scholar
  13. Neufeld, G. and Gospodarowicz, D. 1986. Basic and acidic growth factors interact with the same cell surface receptor. J. Biol. Chem., 261:5631PubMedGoogle Scholar
  14. Robbins, K.C., Leal, F., Pierce, J.H. and Aaronson, S.A. 1985. The v-sis/PDGF-2 transforming gene product localizes to cell membranes but is not a secretory protein. EMBO J., 4:1783PubMedGoogle Scholar
  15. Rogelj, S., Weinberg, R.A., Fanning, P. and Klagsbrun, M. 1988. Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature (London), 331:173CrossRefGoogle Scholar
  16. Rosenthal, A., Lindquist, P.B., Bringman, T.S., Goeddel, D.V. and Derynck, R. 1986. Expression in rat fibroblasts of a human transforming growth factor alpha cDNA results in transformation. Cell, 46:301PubMedCrossRefGoogle Scholar
  17. Schweigerer, L., Neufeld, G., Friedman, J., Abraham, J.A., Fiddes, J.C. and Gospodarowicz, D. 1987. Capillary endothelial cells expresss basic fibroblast growth factor, a mitogen that promotes their own growth. Nature (London), 325:257CrossRefGoogle Scholar
  18. Southern, P. J. and Berg, P. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl.Genet., 1:327PubMedGoogle Scholar
  19. Sporn, M. B. and Todaro, G. J. 1980. Autocrine secretion and malignant transformation of cells. N. Engl. J. Med. 303:878PubMedCrossRefGoogle Scholar
  20. Stern, D. F., Hare, D.L., Cecchin, M.A. and Weinberg, R.A. 1987. Construction of a novel oncogene based on Synthetic Sequences Encoding Epidermal Growth Factor. Science, 235:321PubMedCrossRefGoogle Scholar
  21. Vlodavsky, I., Folkman, J., Sullivan, R., Fridman, R., Ishai-Michaeli, R., Sasse, J. and Klagsbrun, M. 1987. Endothelial cell-derived basic fibriblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci.(USA), 84:2292CrossRefGoogle Scholar
  22. Watanabe, S., Lazar, E. and Sporn, M.B. 1987. Transformation of normal rat kidney (NRK) cells by an infectious retrovirus carrying a synthetic rat type alpha transforming growth factor. Proc. Natl. Acad. Sci. (USA), 84:1258CrossRefGoogle Scholar
  23. Waterfield, M.D., Scarce, G.T., Whittle, N., Stroobert, P., Johnsson, A., Wasteson, A., Westermark, B., Heldin, C-H., Huang, J.S. and Deuel, T.F. 1983. Platelet-derived growth factor is structurally related to the putative transforming protein of Simian sarcoma virus. Nature (London), 304:35CrossRefGoogle Scholar
  24. Wheeler, E.F., Rettenmier, C.W., Look, A.T. and Sherr, C.J. 1986. The v-fms oncogene induces factor independence and tumorigenicity in a CSF-1 dependent macrophage cell line. Nature (London), 324:377CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Snezna Rogelj
    • 1
  • Michael Klagsbrun
    • 1
  1. 1.Children’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations