Advertisement

The Roles of Transforming Growth Factors α and β in Growth Regulation of Normal and Transformed Human Mammary Epithelial Cells

  • Eva M. Valverius
  • Marc E. Lippman
  • Robert B. Dickson
Part of the Reproductive Biology book series (RBIO)

Abstract

Abnormal expression of specific growth factors or their receptors may be involved in the initiation and development of a variety of malignancies (Heldin and Westermark, 1984; Goustin et al., 1986). Normal or nontransformed cells in culture generally exhibit a high degree of dependence upon exogenously supplied growth factors for proliferation, whereas transformed cells demonstrate a partial or complete relaxation in their growth factor requirements. This independence from exogenous growth factors may result from an increased level of expression of the same growth factors and/or receptor “down regulation” in cells which have become malignantly transformed (Sporn and Roberts, 1985). It has been postulated that by an autocrine feed-back loop, the secreted growth factors could act on the cells’ own receptors and thus contribute to an abnormal growth pattern.

Keywords

Epidermal Growth Factor Receptor Epidermal Growth Factor Transform Growth Factor Mammary Epithelial Cell Human Breast Cancer Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anzano M.A., Roberts A.B., De Larco J.E., Wakefield L.M., Assoian R.K., Roche N.S., Smith J.M., Lazarus J.E., and Sporn M.B. 1985. Increased secretion of type β transforming growth factor accompanies viral transformation of cells. Mol. Cell. Biol. 5:242.PubMedGoogle Scholar
  2. Anzano M.A., Roberts A.B., Smith J.M., Sporn M.B., and DeLarco J.E. 1983. Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type α and type β transforming growth factors. Proc. Natl. Acad. Sci. (USA) 80:6264.CrossRefGoogle Scholar
  3. Artega C.L., Hanauske A.R., Clark G.M., Osborne C.K., Hazarika P., Pardue R.L., Tio F., and Von Hoff D.D. 1988. Immunoreactive α transforming growth factor (IrαTGF) activity in effusions from cancer patients: a marker of tumor burden and patient prognosis. Cancer Research 48:5023.Google Scholar
  4. Artega C.L., Tandon A.K., Von Hoff D.D., and Osborne G.K. 1988. Transforming growth factor β: potential autocrine growth inhibitor of estrogen receptor-negative human breast cancer cells. Cancer Research 48:3898.Google Scholar
  5. Assoian R.K., Grotendorst C.R., Miller D.M., and Sporn M.B. 1984. Cellular transformation by coordinated action of three peptide growth factors from human platelets. Nature (London) 309:804.CrossRefGoogle Scholar
  6. Assoian R.K., Komoriya A., Meyers C.A., Smith D.M., and Sporn M.B. 1983. Transforming growth factor β in human platelets: identification of a major storage site, purification and characterization J. Biol. Chem. 259: 9756.Google Scholar
  7. Balk S.D., Riley T.M., Gunther H.S., and Morisi A. 1985. Heparin-treated, v-myc-transformed chicken heart mesenchymal cells assume a normal morphology but are hypersensitive to epidermal growth factor (EGF) and brain fibroblast growth factor (bFGF); cells transformed by the v-Ha-ras oncogene are refractory to EGF and bFGF but are hypersensitive to insulin-like growth factors Proc. Natl. Acad. Sci. (USA) 82:5781.CrossRefGoogle Scholar
  8. Bates S.E., Davidson N.E., Valverius E.M., Dickson R.B., Freter C.E., Tarn J.P., Kudlow J.E., Lippman M.E., and Salomon D.S. 1988a. Expression of transforming growth factor α and its mRNA in human breast cancer: its regulation by estrogen and its possible functional significance. Mol. Endocrinol. 2:543.PubMedCrossRefGoogle Scholar
  9. Bates S.E., McManaway M.E., Lippman M.E., and Dickson R.B. 1986. Characterization of estrogen responsive transforming activity in human breast cancer cell lines. Cancer Research 46:1707.PubMedGoogle Scholar
  10. Bates S.E., Valverius E.M., Stampfer M., Dickson R.B., and Lippman M.E., 1988b. Transforming growth factor α production by proliferating normal breast epithelial cells. Proc. Am. Ass. Ca. Res. 29:52 (abstract 208).Google Scholar
  11. Bronzert D.A., Pantazis P., Antoniades H.N., Kasid A., Davidson N., Dickson R.B., and Lippman M.E. 1987. Synthesis and secretion of PDGF-like growth factor by human breast cancer cell lines. Proc. Natl. Acad. Sci. (USA) 84:5763.CrossRefGoogle Scholar
  12. Bronzert D.A., Valverius E., Bates S.E., Stampfer M., and Dickson R.B. 1989. Production of α and β chains of platelet derived growth factor by human mammary epithelial cells. 70th Annual Meeting of the Endocrine Society, Abstracts. in press.Google Scholar
  13. Cheifetz S., Bassols A., Stanley K., Ohta M., Greenberger J., and Massague J. 1988. Heterodimeric Transforming Growth Factor β. J. Biol. Chem. 263:10783.PubMedGoogle Scholar
  14. Cherington P.V. and Pardee A.B. 1982. On the basis for loss of the EGF growth requirement by transformed cells. In “Growth of Cells in Hormonally Defined Media.” (G.H. Sato, A.B. Pardee, D.A. Sirbasku, eds.), Cold Spring Harbor Conferences on Cell Proliferation 9, Cold Spring Harbor Laboratories, New York.Google Scholar
  15. Ciardiello F., Kim N., Hynes N., Jaggo R., Redmond S., Liscia D.S., Sanfilippo B., Mario G., Callahan R., Kidwell W.R., and Salomon D.S. 1988. Induction of transforming growth factor α expression in mouse mammary epithelial cells after transformation with a point-mutated c-Ha-ras protooncogene. Mol. Endocrinol, in press.Google Scholar
  16. Clair T., Miller W.R., and Cho-Chung Y.S. 1987. Prognostic significance of the expression of a ras protein with a molecular weight of 21,000 by human breast cancer. Cancer Research 47:5290.PubMedGoogle Scholar
  17. Clark R., Stampfer M.R., Milley R., O’Rourke E., Walen K.H., Kriegler M., Kopplin J., and McCormick F. 1988. Transformation of human mammary epithelial cells by oncogenic retroviruses. Cancer Research 48:4689.PubMedGoogle Scholar
  18. Coffey R.J., Derynck R., Wilcox J.N., Bringman T.S., Goustin A.S., Moses H.L., and Pittelkow M.R. 1987. Production and auto-induction of transforming growth factor-α in human keratinocytes. Nature (London) 328:817.CrossRefGoogle Scholar
  19. Davidson N.E., Gelmann E.P., Lippman M.E., and Dickson R.B. 1987. Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol. Endocrinol. 1:216.PubMedCrossRefGoogle Scholar
  20. Derynck R. 1988. Transforming growth factor α. Cell 54:593.PubMedCrossRefGoogle Scholar
  21. Di Fiore P.P., Pierce J.H., Kraus M.H., Segatto O., King C.R., and Aaronson S.A. 1987b. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 237:178.PubMedCrossRefGoogle Scholar
  22. Di Fiore P.P., Pierce J.H., Fleming T.P., Hazan R., Ullrich A., King C.R., Schlessinger J., and Aaronson S.A. 1987a. Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51:1063.PubMedCrossRefGoogle Scholar
  23. Dickson R.B., Kasid A., Huff K.K., Bates S., Knabbe C., Bronzert D., Gelman E.P., and Lippman M.E. 1987. Activation of growth factor secretion in tumorigenic states of breast cancer induced by 17-β-estradiol or v-ras H oncogene. Proc. Natl. Acad. Sci. (USA) 84:837.CrossRefGoogle Scholar
  24. Dickson R.B. and Lippman M.E. 1988. Control of human breast cancer by estroge, growth factors, and oncogenes, In “Breast Cancer: Cellular and Molecular Biology,” (M.E. Lippman, R.B. Dickson, eds.), Martinus Nijhoff Publishers, Boston.Google Scholar
  25. Dickson R.B., McManaway M.E., and Lippman M.E. 1986. Estrogen-induced factors of breast cancer cells partially replace estrogen to promote tumor growth. Science 232:1540.PubMedCrossRefGoogle Scholar
  26. Eckert K., Lübbe L., Schon R., and Grosse R. 1985. Demonstration of transforming growth factor activity in mammary epithelial tissues. Biochem. Intl. 11:441.Google Scholar
  27. Fernandez-Pol J.A., Klos D.J., Hamilton P.D., and Talkad V.D. 1987. Modulation of epidermal growth factor receptor gene expression by transforming growth factor-β in a human breast carcinoma cell line. Cancer Research 47:4260.PubMedGoogle Scholar
  28. Filmus J., Pollak M.N., Cailleau R., and Buick R.N. 1985. MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF. Biochem. Biophys. Res. Commun. 128:898.PubMedCrossRefGoogle Scholar
  29. Finzi E., Fleming T., Segatto O., Pennington C.Y., Bringman T.S., Derynck R., and Aaronson S.A. 1987. The human transforming growth factor type α coding sequence is not a direct-acting oncogene when overexpressed in NIH 3T3 cells. Proc. Natl. Acad. Sci. (USA) 84:3733.CrossRefGoogle Scholar
  30. Finzi E., Kilkenny A., Strickland J.E., Balaschak M., Bringman T., Derynck R., Aaronson S., and Yuspa S.H. 1988. TGFα stimulates growth of skin papillomas by autocrine and paracrine mechnisms but does not cause neoplastic progression. Mol. Carinogenesis 1:7.CrossRefGoogle Scholar
  31. Goustin A.S., Leof E.B., Shipley G.D., and Moses L. 1986. Growth factors and cancer. Cancer Research 46:1015.PubMedGoogle Scholar
  32. Hammond S.L., Ham R.G., and Stampfer M.R. 1984. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl. Acad. Sci. (USA) 81:5435.CrossRefGoogle Scholar
  33. Heldin C.H. and Westermark B. 1984. Growth factors: mechanism of action and relations to oncogenes. Cell 37:9.PubMedCrossRefGoogle Scholar
  34. Horan-Hand P., Vilase V., Thor A., Ohuchi N., and Schlom J., 1987. Quantitation of Harvey ras p21 enhanced expression in human breast and colon carcinomas. J. Natl. Cancer Inst. 79:59.Google Scholar
  35. Houck K.A., Strom S.C., and Michalopoulos G. 1987. Resistance to the growth inhibitory effect of transforming growth factor β is induced by transfection of an activated H-ras oncogene into rat liver epithelial cells. Proc. Am. Ass. Ca. Res. 28:64 (abstract 254).Google Scholar
  36. Hudziak R.M., Schlessinger J., and Ullrich A. 1987. Increased expession of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc. Natl. Acad. Sci. (USA) 84:7159.CrossRefGoogle Scholar
  37. Ignotz R.A. and Massague J. 1986. Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J. Biol. Chem. 261:4337.PubMedGoogle Scholar
  38. Kamata T. and Feramisco J.R. 1984. Is the ras oncogene protein a component of the epidermal growth factor receptor system? In “Cancer Cells 1/The Transformed Phenotype.” (A.J. Levine, G.F. Vande Woude, W.C. Topp, J.D. Watson, eds.), Cold Spring Harbor, New York.Google Scholar
  39. Kaplan P.L. and Ozanne B. 1983. Cellular responsiveness to growth factors correlates with a cell’s ability to express the transformed phenotype, Cell 33:931.PubMedCrossRefGoogle Scholar
  40. Kimchi A., Wang X.-F., Weinberg R.A., Cheifetz S., and Massague J. 1988. Absence of TGF-β receptors and growth inhibitory responses in retinoblastoma cells. Science 240:196.PubMedCrossRefGoogle Scholar
  41. Kozma S.C., Bogaard M.E., Buser K., Saurer S.M., Bos J.L., Groner B., and Hynes N.E. 1988. The human c-Kirsten ras gene is activated by a novel mutation in codon 13 in the breast carcinoma cell line MDA-MB 231. Nucleic Acids Research 15:5963.CrossRefGoogle Scholar
  42. Kraus M.H., Yuspa Y., and Aaronson S.A. 1984. A position 12-activated H-ras oncogene in all Hs578T mammary carcinosarcoma cells but not normal mammary cells of the same patient. Proc. Natl. Acad. Sci. (USA) 81:5384.CrossRefGoogle Scholar
  43. Kurachi H., Okamoto S., and Oka T. 1985. Evidence for the involvement of the submandibular gland epidermal growth factor in mouse mammary tumorigenesis. Proc. Natl. Acad. Sci. (USA) 81:5940.CrossRefGoogle Scholar
  44. Leof E.B., Proper J.A., Shipley G.D., Di Corleto P.E., and Moses H.L. 1986. Induction of c-sis mRNA and activity similar to platelet-dervied growth factor by transforming growth factor-β: a proposed model for indirect mitogenesis involving autocrine activity. Proc. Natl. Acad. Sci. (USA) 83:2453.CrossRefGoogle Scholar
  45. Leof E.B., Proper J.A., and Moses H.L. 1987. Modulation of transforming growth factor type β action by activated ras and c-myc. Mol. Cell. Biol. 7:2649.PubMedGoogle Scholar
  46. Like B. and Massague J. 1986. The antiproliferative effect of type β transforming growth factor ocurs at a level distal from receptors for growth-activating factors. J. Biol. Chem. 261:13426.PubMedGoogle Scholar
  47. Linsley P.S., Hargreaves W.R., Twardzik D.R., and Todaro G.J. 1985. Detection of larger polypeptides structurally and functionally related to type I transforming growth factor. Proc. Natl. Acad. Sci. (USA) 82:356.CrossRefGoogle Scholar
  48. Liu S.C., Sanfilippo B., Perroteau I., Derynck R., Salomon D.S., and Kidwell W.R. 1987. Expression of transforming growth factor α (TGFa) in differentiated rat mammary tumors: estrogen induction of TGFa production. Mol. Endocrinol. 1:683.PubMedCrossRefGoogle Scholar
  49. Luttrell D.K., Luttrell L.M., and Parsons S.J. 1988. Augmented mitogenic responsiveness to epidermal growth factor in murine fibroblasts that overexpress pp60c-src. Mol. Cell. Biol. 8:497.PubMedGoogle Scholar
  50. Macias A., Perez R., Hägerström T., and Skoog L. 1987. Identification of transforming growth factor a in human primary breast carcinomas. Anticancer Research 7:1271.PubMedGoogle Scholar
  51. Massague J. 1983. Epidermal growth factor-like transforming growth factor. J. Biol. Chem. 258:13606.PubMedGoogle Scholar
  52. Masui T., Wakefield L.M., Lechner J.F., La Veck M.A., Sporn M.B., and Harris C.C. 1986. Type β transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proc. Natl. Acad. Sci. (USA) 83:2438.CrossRefGoogle Scholar
  53. Medina D. 1988. The preneoplasti state in mouse mammary tumorigenesis. Carcinogenesis 9:1113.PubMedCrossRefGoogle Scholar
  54. Moses H.L., Tucker R.F., Leof E.B., Coffey R.J., Halper J., and Shipley G.D. 1985. Type-β transforming growth factor is a growth stimulator and a growth inhibitor. In “Cancer Cells” Vol.3, (J. Feramisco, B. Ozanne, C. Stiles, eds.), Cold Spring Harbor Laboratory, New York.Google Scholar
  55. Oka T., Tsutsumi O., Kurachi H., and Okamoto S. 1988. The role of epidermal growth factor in normal and neoplastic growth of mouse mammary epithelial cells. In “Breast Cancer: Cellular and Molecular Biology.” (M.E. Lippman and R.B. Dickson, eds.), Martinus Nijhoff Publishers, Boston.Google Scholar
  56. Osborne C.K., Hamilton B., Titus G., and Livingston R.B. 1980. Epidermal growth factor stimulation of human breast cancer cells in culture. Cancer Research 40:2361.PubMedGoogle Scholar
  57. Perez R., Pascual M., Macias A., and Lage A. 1984. Epidermal growth factor receptors in human breast cancer. Breast Cancer Re. Treat. 4:189.CrossRefGoogle Scholar
  58. Perroteau I., Salomon D., DeBortoli M., Kidwell W., Hazarika P., Pardue R., Dedman J., and Tam J. 1986. Immunological detection and quantitation of α transforming growth factors in human breast carcinoma cells. Breast Cancer Res. Treat. 7:201.PubMedCrossRefGoogle Scholar
  59. Reddel R.R., Ke Y., Kaighn M.E., Malan-Shibley L., Lechner J.F., Rhim J.S., and Harris C.C. 1989. Human bronchial epithelial cells neoplastically transformed by v-Ki-ras: altered response to inducers of terminal squamous differentiation. Oncogene Research, in press.Google Scholar
  60. Riedel H., Massoglia S., Schlessinger J., and Ullrich A. 1988. Ligand activation of overexpressed epidermal growth factor receptors transforms NIH 3T3 mouse fibroblasts. Proc. Natl. Acad. Sci. (USA) 85:1477.CrossRefGoogle Scholar
  61. Roberts A.B., Anzano M.A., Wakefield L.M., Roche N.S., Stern D.F., and Spron M.B. 1985. Type β transforming growth factor: a bifunctional regulator of cellular growth. Proc. Natl. Acad. Sci. (USA) 82:119.CrossRefGoogle Scholar
  62. Roberts A.B., Lamb L.C., Newton D.L., Sporn M.B., DeLarco J.E., and Todaro G.J. 1980. Transforming growth factors: Isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction. Proc. Natl. Acad. Sci. (USA) 77:3494.CrossRefGoogle Scholar
  63. Rosenthal A., Lindquist P.B., Bringman T.S., Goeddel D.V., and Derynck R. 1986. Expression in rat fibroblasts of a human transforming growth factor-α cDNA results in transformation. Cell 46:301.PubMedCrossRefGoogle Scholar
  64. Sainsbury J.R., Farndon J.R., Needham G.K., Malcolm A.J., and Harris A.L. 1987. Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet i:1398.Google Scholar
  65. Sairenji M., Suzuki K., Murakami K., Motohashi H., Okamoto T., and Umeda M. 1987. Transforming growth factor activity in pleural and peritoneal effusions from cancer and non-cancer patients. Jpn. J. Cancer Res. (Gann). 78:814.PubMedGoogle Scholar
  66. Salomon D.S., Bano M., and Kidwell W.R. 1986. Polypeptide growth factors and the growth of mammary epithelial cells. In “Breast Cancer: Origins, Detection and Treatment,” (M.A. Rich, J.C. Hayes, J.T. Papadimitrious, eds.), Martinus Nijhoff Publishers, Boston.Google Scholar
  67. Salomon D.S., Perroteau I., Kidwell W.R., Tam J., and Derynck R. 1987. Loss of growth responsiveness to epidermal growth factor and enhanced production of a-transforming growth factors in ras — transformed mouse mammary epithelial cells. J. Cell. Physiol. 130:397.PubMedCrossRefGoogle Scholar
  68. Salomon D.S., Zwiebel J.A., Bano M., Losonczy I., Fehnel P., and Kidwell W.R. 1984. Presence of transforming growth factors in human breast cancer cells. Cancer Research 44:4069.PubMedGoogle Scholar
  69. Santon J.B., Cronin M.T., MacLeod C.L., Mendelsohn J., Masui H., and Gill G.N. 1986. Effects of epidermal growth factor receptor concentration on tumorigenicity of A431 cells in nude mice. Cancer Research 46:4701.PubMedGoogle Scholar
  70. Seyedin S.M., Thompson A.Y., Bentz H., Rosen D.M., McPherson J.M., Conti A., Siegel N.R., Gallupi G.R., and Piez K.A. 1986. Cartilage-inducing factor A. J. Biol. Chem. 261:5693.PubMedGoogle Scholar
  71. Shankar V., Ciardiello F., Kim N., Derynck R., Liscia D.S., Merlo G., Langton B.C., Sheer D., Callahan R., Bassin R.H., Lippman M.E., Hynes N., and Salomon D.S. 1989. Transformation of normal mouse mammary epithelial cells following transfection with a human transforming growth factor α cDNA. Mol. Carcinogenesis submitted.Google Scholar
  72. Shipley G.D., Pittelkow M.R., Wille J.J.Jr., Scott R.E., and Moses H.L. 1986 Reversible inhibition of normal human prokeratinocyte proliferation by type β transforming growth factor-growth inhibitor in serum-free medium. Cancer Research 46:2068.PubMedGoogle Scholar
  73. Silberstein G.B. and Daniel C.W. 1987. Reversible inhibition of mammary gland growth by transforming growth factor-β. Science 237:291.PubMedCrossRefGoogle Scholar
  74. Slamon D.J., Clark G.M., Wong S.G., Levin W.J., Ullrich A., and McGuire W.L. 1987. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:117.CrossRefGoogle Scholar
  75. Spitzer E., Grosse R., Kunde D., and Schmidt H.E. 1987. Growth of mammary epithelial cells in breast-cancer biopsies correlates with EGF binding. Int. J. Cancer 39:279.PubMedCrossRefGoogle Scholar
  76. Sporn M.B. and Roberts A.B. 1986. Peptide growth factors and inflammation, tissue repair, and cancer. J. Clin. Invest. 78:329.PubMedCrossRefGoogle Scholar
  77. Sporn M.B. and Roberts A.B. 1985. Autocrine growth factors and cancer. Nature (London) 313:745.CrossRefGoogle Scholar
  78. Sporn M.B. and Todaro G.J. 1980. Autocrine secretion and malignant transformation of cells. N. Engl. J. Med. 303:878.PubMedCrossRefGoogle Scholar
  79. Stampfer M.R. 1985. Isolation and growth of human mammary epithelial cells. J. Tiss. Cult. Meth. 9:107.CrossRefGoogle Scholar
  80. Stampfer M.R. and Bartley J.C. 1988. Human mammary epithelial cells in culture: differentiation and transformation. In “Breast Cancer: Cellular and Molecular Biology,” (M.E. Lippman, R.B. Dickson, eds.), Martinus Nijhoff Publishers, Boston.Google Scholar
  81. Stampfer M.R. and Bartley J.C. 1985. Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo-a-pyrene. Proc. Natl. Acad. Sci. (USA) 82:2394.CrossRefGoogle Scholar
  82. Stern D.F., Hare D.L., Cecchini M.A., and Weinberg R.A. 1987. Construction of a novel oncogene based on synthetic sequences encoding epidermal growth factor. Science 235:321.PubMedCrossRefGoogle Scholar
  83. Stern D.F., Roberts A.B., Roche N.S., Sporn M.B., and Weinberg R.A. 1986. Differential responsiveness of myc-and ras-transfected cells to growth factors: selective stimulation of myc-transfeeted cells by epidermal growth factor. Mol. Cell. Biol. 6:870.PubMedGoogle Scholar
  84. Stromberg K., Hudgins R., and Orth D.N. 1987. Urinary TGFs in neoplasia: immunoreactive TGF-α in the urine of patients with disseminated breast carcinoma. Biochem. Biophys. Res. Comm. 144:1059.PubMedCrossRefGoogle Scholar
  85. Takehara K., LeRoy E.C., and Grotendorst G.R. 1987. TGF-β inhibition of endothelial cell proliferation: alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell 49:415.PubMedCrossRefGoogle Scholar
  86. Todaro G.J., DeLarco J.E., and Cohen S. 1976. Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature (London) 264:26.CrossRefGoogle Scholar
  87. Todaro G.J., Marquardt H., Twardzik D.R., Reynolds F.H., and Stephenson J.R. 1983. Transforming growth factors produced by viral-transformed and human tumor cells. In “Genes and Proteins in Oncogenesis,” (I.B. Weinstein, H.J. Vogel, eds.), Academic Press, New York.Google Scholar
  88. Travers M.R., Barrett-Lee P.J., Berger U., Luqmani Y.A., Gazet J-C., Powles T.J., and Coombes R.C. 1988. Growth factor expression in normal, benign, and malignant breast tissue. Brit. Med. J. 296:1621.CrossRefGoogle Scholar
  89. Valverius E.M., Bates S.E., Stampfer M.R., Ciar R., McCormick F., Salomon D.S., Lippman M.E., and Dickson R.B. 1989. Transforming growth factor α production and EGF receptor expression in normal and oncogene transformed human mammary epithelial cells. Mol. Endocrinol. in press.Google Scholar
  90. Valverius E.M., Walker-Jones D., Bates S.E., Stampfer M.R., Clark R., McCormick F., Lippman M.E., and Dickson R.B. 1988. Inhibition of human breast epithelial cells with transforming growth factor β and desensitization by oncogene mediated transformation. Proc. Am. Ass. Ca. Res. 29:238 (abstract 948).Google Scholar
  91. Velu T.J., Beguinot L., Vass W.C., Willingham M.C., Merlino G.T., Pastan I., and Lowy D.R. 1987. Epidermal growth factor-dependent transformation by a human EGF receptor proto-oncogene. Science 238:1408.PubMedCrossRefGoogle Scholar
  92. Vonderhaar B.K. 1988. Regulation of development of the normal mammary gland by hormones and growth factors. In “Breast Cancer: Cellular and Molecular Biology,” (M.E. Lippman and R.B. Dickson, eds.), Martinus Nijhoff Publishers, Boston.Google Scholar
  93. Walker-Jones D., Valverius E.M., Stampfer M.S., Clark R., McCormick F., Lippman M.E., and Dickson R.B. 1988. Transforming growth factor β stimulates expression of milk fat globule protein in normal and oncogene-transformed human mammary epithelial cells. Proc. Am. Ass. Ca. Res. 29:249 (abstract 990).Google Scholar
  94. Watanabe S., Lazar E., and Sporn M.B. 1987. Transformation of normal rat kidney (NRK) cells by an infectious retrovirus carrying a synthetic rat type α transforming growth factor gene. Proc. Natl. Acad. Sci. (USA) 84:1258.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Eva M. Valverius
    • 1
  • Marc E. Lippman
    • 1
  • Robert B. Dickson
    • 1
  1. 1.Vincent Lombardi Cancer CenterGeorgetown University HospitalUSA

Personalised recommendations