A Role for the Extracellular Matrix in Autocrine and Paracrine Regulation of Tissue-Specific Functions

  • M. H. Barcellos-Hoff
  • M. J. Bissell
Part of the Reproductive Biology book series (RBIO)

Abstract

How can the knowledge gained in characterizing a functional epithelial cell model in culture shed light on the autocrine and paracrine mechanisms of gene regulation? Our purpose in presenting the following brief description of mammary epithelial cell culture is two-fold. First, to suggest that functional cells should be prerequisite for studying the effects and relationships between the cell and the multitude of growth factors and hormones that interact with tissues. Second, to emphasize the role of the extracellular matrix (ECM) in obtaining the “correct” functional phenotype for epithelial cells in culture. These aims are by no means all inclusive. There are many new and interesting reports of the effects of growth factors in mammary gland that we will not discuss in detail here, including exciting research that addresses how ECM and soluble factors interact in vivo. For example, the recent results indicating that transforming growth factor-β (TGF-β) acts as a negative regulator of ductal growth in virgin gland (Silbertstein and Daniel, 1987) may involve the ECM, since TGF-β appears to be intimately involved in synthesis and degradation of ECM molecules (Sporn et al., 1987).

Keywords

Permeability Estrogen Lactate Hydrocortisone Sarcoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barcellos-Hoff M.H., Neville P.N., Aggeler J. and Bisseil M.J. 1987. Polarized secretion by mammary epithelial cell cultures on EHS-matrix. J. Cell Biol. 105:220a.Google Scholar
  2. Barcellos-Hoff M.H., Aggeler J., Ram T.G. and Bissell M.J. 1989. Functional differentiation and alveolar morphogenesis of primary mammary epithelial cells cultures on reconstituted basement membrane. Development 105:225.Google Scholar
  3. Baskin J.B., Shannon J.M. and Clark R.A.F. 1987. Early events in the multicellular organization of human epidermal cells on basement membrane matrix. J. Cell Biol. 105:223a.Google Scholar
  4. Bissell D.M., Arenson D.M., Maher J.J. and Roll F.J. 1987. Support of cultured hepatocytes by a laminin-rich gel. J. Clin. Invest. 79:801.PubMedCrossRefGoogle Scholar
  5. Bissell M.J. 1981. The differentiated state of normal and malignant cells or how to define a “normal” cell in culture. Int. Rev. Cytol. 70:27.PubMedCrossRefGoogle Scholar
  6. Bissell M.J., Hall H.G. and Parry G. 1982. How does the extracellular matrix direct gene expression?. J. Theor. Biol. 99:31.PubMedCrossRefGoogle Scholar
  7. Bissell M.J. and Hall H.G. 1987. Form and function in the mammary gland: The role of extracellular matrix. In: “The mammary gland: development, regulation and function” (M. Neville and C. Daniel, eds.), Plenum Press, New York. p. 97.Google Scholar
  8. Bissell M.J., Lee EY-H., Li M-L., Chen L-H. and Hall H.G. 1985. Role of extracellular matrix and hormones in modulation of tissue-specific functions in culture: mammary gland as a model for endocrine sensitive tissues. In: “Benign prostatic hyperplasia, Vol. II” (C.H. Rogers, D.C. Coffey, G.R. Cunha, eds.), NIH Publication No. 87-2881, Washington, D.C. p. 39.Google Scholar
  9. Bissell M.J. and Aggeler J. 1987. Dynamic reciprocity: How do extracellular matrix and hormones direct gene expression? In: “Mechanisms of signal transduction by hormones and growth factors” (M. Cabot, ed.), Alan R. Liss, New York. p. 251.Google Scholar
  10. Bissell M.J., Li M.L., Chen L-H. and Lee EY-H. 1987. Regulation of milk proteins in the mouse mammary epithelial cells by extracellular matrix and hormones. In: “Growth and differentiation of mammary epithelial cells in culture” (J. Enami and R. Ham, eds.), Scientific Society Press, Tokyo, Japan, p. 155.Google Scholar
  11. Blau H., Guzowski D.E., Siddiqi Z.A., Scarpelli E.M. and Bienkowski R.S. 1988. Fetal type 2 pneumocytes form alveolar-like structures and maintain long-term differentiation on extracellular matrix. J. Cell. Physiol. 136:203.PubMedCrossRefGoogle Scholar
  12. Blum J.L., Zeigler M.E. and Wicha M.S. 1987. Regulation of rat mammary gene expression by extracellular components. Expt. Cell Res. 173:322.CrossRefGoogle Scholar
  13. Burwen S.J. and Pitelka D.R. 1980. Secretory function of lactating mouse mammary epithelial cells cultured on collagen gels. Expt. Cell Res. 126:249.CrossRefGoogle Scholar
  14. Chen L-H. and Bissell M.J. 1987. Transferrin mRNA level in the mouse mammary gland is regulated by pregnancy and extracellular matrix. J. Biol. Chem. 262:17247.PubMedGoogle Scholar
  15. Chiquet-Ehrismann R., Mackie E.J., Pearson C.A. and Sakakura T. 1986. Tenascin: An extracellualr matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell 47:131.PubMedCrossRefGoogle Scholar
  16. Daniel C.W. and Silberstein G.B. 1987. Postnatal development of the rodent mammary gland. In: “The mammary gland: development, regulation and function,” (M. Neville and C. Daniel, eds.), Plenum Press Publishing Corp., New York. p. 3.Google Scholar
  17. David G. and Bernfield M. 1979. Collagen reduces glycosaminoglycan degradation by cultured mammary epithelial cells: Possible mechanism for basal lamina formation. Proc. Natl. Acad. Sci. (USA) 76:786.CrossRefGoogle Scholar
  18. David G., Nusgens B., van der Schueren B., Cauweriberge D.V., van der Berghe B. and Lapiere C. 1987. Collagen metabolism and basement membrane formation in cultures of mouse mammary epithelial cells. Expt. Cell Res. 170:402.CrossRefGoogle Scholar
  19. Dulbecco R., Henahan M. and Armstrong B. 1982. Cell types and morphogenesis in the mammary gland. Proc. Natl. Acad. Sci. (USA) 79:7346.CrossRefGoogle Scholar
  20. Dulbecco R., Allen W.R., Bologna M. and Bowman M. 1986. Marker evolution during the development of the rat mammary gland: stem cells identified by markers and the role of myoepithelial cells. Cancer Research 46:2449.PubMedGoogle Scholar
  21. Ehmann U.K., Peterson W.D.Jr. and Misfeldt D.S. 1984. To grow mouse mammary epithelial cells in culture. J. Cell Biol. 98:1026.PubMedCrossRefGoogle Scholar
  22. Emerman J.T. and Bissell M.J. 1988. Cultures of mammary epithelial cells: Extracellular matrix and functional differentiation. In: “Advances in cell culture,” (K. Maramorosch and G.H. Sato, eds.), Academic Press, San Diego, CA. p. 137.Google Scholar
  23. Emerman J.T., Bartley J.C. and Bissell M.J. 1980. Interrelationship of glycogen metabolism and lactose synthesis in mammary epithelial cells of mice. Biochem J. 192:695.PubMedGoogle Scholar
  24. Emerman J.T. and Pitelka D.R. 1977. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13:316.PubMedCrossRefGoogle Scholar
  25. Emerman J.T., Enami J., Pitelka D.R. and Nandi S. 1977. Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc. Natl. Acad. Sci. (USA) 74:4466.CrossRefGoogle Scholar
  26. Emerman J.T., Bartley J.C. and Bissell M.J. 1981. Glucose metabolite patterns as markers of functional differentiation in freshly isolated and cultured mouse mammary epithelial cells. Expt. Cell Res. 134:241.CrossRefGoogle Scholar
  27. Flynn S., Yang J. and Nandi S. 1982. Growth and differentiation of primary cultures of mouse mammary epithelium embedded in collagen gel. Differentiation 22:191.PubMedCrossRefGoogle Scholar
  28. Hadley M.A., Byers S.W., Suarez-Quian C.A., Kleinman H. and Dym M. 1985. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J. Cell Biol. 101:1511.PubMedCrossRefGoogle Scholar
  29. Haeuptle M-T., Suard Y.L.M., Bogenmann E., Reggio H., Racine L. and Kraehenbuhl J-P. 1983. Effect of cell shape change on the function and differentiation of rabbit mammary cells in culture. J. Cell Biol. 96:1425.PubMedCrossRefGoogle Scholar
  30. Hall H.G., Farson D.A. and Bissell M.J. 1982. Lumen formation by epithelial cell lines in response to collagen overlay: A morphogenetic model in culture. Proc. Natl. Acad. Sci. (USA) 79:4672.CrossRefGoogle Scholar
  31. Haslam S.Z. and Levely M.L. 1985. Estrogen responsiveness of normal mouse mammary cells in primary cell culture: Association of mammary fibroblasts with estrogenic regulation of progesterone receptors. Endocrinology 116:1835.PubMedCrossRefGoogle Scholar
  32. Haslam S.Z. 1986. Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogen in vitro. Cancer Research 46:310.PubMedGoogle Scholar
  33. Hobbs A.A., Richards D.A., Kessler D.J. and Rosen J.M. 1982. Complex hormonal regulation of rat casein gene expression. J. Biol. Chem. 257:3598.PubMedGoogle Scholar
  34. Imagawa W., Tomocka Y., Hamamoto S. and Nandi S. 1985. Stimulation of mammary epithelial cell growth in vitro: Interaction of epidermal growth factor and mammogenic hormones. Endocrinology 116:1514.PubMedCrossRefGoogle Scholar
  35. Ingber D.E., Madri J.A. and Jamieson D.J. 1986. Basement membrane as a spatial organizer of polarized epithelia. Amer. J. Pathol. 122:129.Google Scholar
  36. Kratochwil K. 1969. Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev. Biol. 20:46.PubMedCrossRefGoogle Scholar
  37. Lee EY-H., Parry G. and Bissell M.J. 1984. Modulation of secreted proteins of mouse mammary epithelial cells by the extracellular matrix. J. Cell Biol. 98:146.PubMedCrossRefGoogle Scholar
  38. Lee EY-H., Lee W-H., Kaetzel C.S., Parry G. and Bissell M.J. 1985. Interaction of mouse mammary epithelial cells with collagenous substrata: Regulation of casein gene expression and secretion. Proc. Natl. Acad. Sci. (USA) 82:1419.CrossRefGoogle Scholar
  39. Lee EY-H., Barcellos-Hoff M.H., Chen L-H., Parry G. and Bisseil M.J. 1987. Transferrin is a major mouse milk protein and is synthesized by mammary epithelial cells. In Vitro Cell Dev. Biol. 23:221.PubMedCrossRefGoogle Scholar
  40. Levine J.F. and Stockdale F.E. 1984. 3T3-L1 adipocytes promote the growth of mammary epithelial. Expt. Cell Res. 151:112.CrossRefGoogle Scholar
  41. Levine J.F. and Stockdale F.E. 1985. Cell-cell interations promote mammary epithelial cell differentiation. J. Cell Biol. 100:1415.PubMedCrossRefGoogle Scholar
  42. Li M.L., Aggeler J., Farson D.A., Hatier C., Hasseil J. and Bisseil M.J. 1987. Influence of a reconstituted basement membrane and its components on casein gene expession and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. (USA) 84:136.CrossRefGoogle Scholar
  43. Liu S., Sanfilippo B., Perroteau I., Derynck R., Salomon S.S. and Kidwell W.R. 1987. Expression of transforming growth factor alpha in differentiated rat mammary tumors: estrogen induction of transforming growth factor alpha production. Mol. Endocrinol. 1:683.PubMedCrossRefGoogle Scholar
  44. Martinez-Hernandez A., Fink L.M. and Pierce G.B. 1976. Removal of basement membrane in the involuting breast. Lab. Invest. 34:455.PubMedGoogle Scholar
  45. Medina D., Li M.L., Oborn C.J. and Bissell M.J. 1987. Casein gene expression in mouse mammary epithelial cell lines: dependence upon extracellular matrix and cell type. Expt. Cell Res. 172:192.CrossRefGoogle Scholar
  46. Mercier J-C. and Gaye P. 1983. Milk protein synthesis. In: “Biochemistry of lactation,” (T.B. Mepham, ed.), Elsevier Science Publishers, Amsterdam, p. 177.Google Scholar
  47. Mohanam S., Salomon D.S. and Kidwell W.R. 1988. Substratum modulation of epidermal growth factor receptor expression by normal mouse mammary cells. J. Dairy Sci. 71:1507.PubMedCrossRefGoogle Scholar
  48. Monaghan P., Warburton M.J., Perusinghe N. and Rudland P.S. 1983. Topographical arrangement of basement membrane proteins in lactating rat mammary gland: Comparison of the distribution of type IV collagen, laminin, fibronectin, and Thy-1 at the ultrasturctuai level. Proc. Natl. Acad. Sci. (USA) 80:3344.CrossRefGoogle Scholar
  49. Neville M.C. and Peaker M. 1981. Ionized calcium in milk and the integrity of the mammary epithelium in the goat. J. Physiol. 313:561.PubMedGoogle Scholar
  50. Neville M.C., Stahl L., Lutes C., Bissell M.J. and Barcellos-Hoff M.H. 1987. A scanning electron microscope study of the morphogenesis of mouse mammary cultures on collagen gels and EHS matrix. J. Cell Biol. 105:139a.Google Scholar
  51. Ormerod E.J. and Rudland P.S. 1985. Isolation and differentiation of cloned epithelial cell lines form normal rat mammary glands. In Vitro Cell Dev. Biol. 21:143.PubMedCrossRefGoogle Scholar
  52. Ormerod E.J. and Rudland P.S. 1988. Mammary gland morphogenesis in vitro: Extracellular requirements for the formation of tubules in collagen gels by a cloned rat mammary epithelial cell line. In Vitro Cell Dev. Biol. 24:17.PubMedCrossRefGoogle Scholar
  53. Parry G., Lee EY-H. and Bissell M.J. 1982. Modulation of the differentiated phenotype of cultured mouse mammary epithelial cells by collagen substrata. In: “The extracellular matrix,” (S.P. Hawkes and G. Wang, eds.), Academic Press, New York. p. 303.Google Scholar
  54. Parry G., Lee EY-H., Farson D.A., Koval N. and Bissell M.J. 1985. Collagenous substrata regulate the nature and distribution of glycosaminoglycans produced by differentiated cultures of mouse mammary epithelial cells. Expt. Cell Res. 156:487.CrossRefGoogle Scholar
  55. Penman S., Fulton A., Capeo D., Ben-Ze’ev A., Willtelsberger S. and Tse C.F. 1981. Cytoplasmic and nuclear architechture in cells and tissue: Form, function and mode of assembly. Cold Spring Harbor Symp. Quant. Biol. 46:1013.CrossRefGoogle Scholar
  56. Pickett P.B., Pitelka D.R., Hamamoto S.T. and Misfeldt D.S. 1975. Occluding junctions and cell behavior in primary cultures of normal and neoplastic mammary gland cells. J. Cell Biol. 66:316.PubMedCrossRefGoogle Scholar
  57. Pitelka D.R., Hamamoto S.T., Duafala J.G. and Nemanic M.K. 1973. Cell contacts in the mouse mammary gland. J. Cell Biol. 56:797.PubMedCrossRefGoogle Scholar
  58. Pitelka D.R., Hamamoto S.T. and Taggart B.N. 1980. Basal lamina and tissue recognition in malignant mammary tumors. Cancer Research 40:1600.PubMedGoogle Scholar
  59. Raber J.M. and D’Ambrosio S.M. 1986. Isolation of single cell suspensions from the rat mammary gland: Separation, characterization, and primary culture of various cell populations. In Vitro Cell Dev. Biol. 22:429.PubMedCrossRefGoogle Scholar
  60. Richards J., Guzman R., Konrad M., Yang J. and Nandi S. 1982. Growth of mouse mammary gland end buds cultured in a collagen gel matrix. Expt. Cell Res. 141:433.CrossRefGoogle Scholar
  61. Richards J., Pasco D., Yang J., Guzman R. and Nandi S. 1983. Comparison of the growth of normal and neoplastic mouse mammary cells on plastic, on collagen gels and in collagen gels. Expt. Cell Res. 146:1.CrossRefGoogle Scholar
  62. Rinehart C.A., Irigaray M.F., Lyn-Cook B.D. and Kaufman D.G. 1987. An in vitro model system for the organogenesis of human edometrial secretory glands. J. Cell Biol. 105:42a.Google Scholar
  63. Robbins S.L. and Cottran R.S. 1979. Pathologic basis of disease. W.B. Sanders Co., PhiladelphiaGoogle Scholar
  64. Rosen J.M., Matusik R.J., Richards D.A., Gupt P. and Rodgers J.R. 1980. Multihormonal regulation of casein gene expression at the transcriptional and post-transcriptional levels in the mammary gland. Recent Prog. Horm. Res. 36:157.PubMedGoogle Scholar
  65. Russo J. and Russo I.H. 1980. Influence of differentiation and cell kinetics on the susceptibility of the rat mammary gland to carcinogenesis. Cancer Research 40:2677.PubMedGoogle Scholar
  66. Sakakura T., Nishizuka Y. and Dawe C.J. 1976. Mesenchyme-dependent morphogenesis and epithelium-specific cytodifferentiation in mouse mammary gland. Science 194:1439.PubMedCrossRefGoogle Scholar
  67. Sakakura T., Sakagami Y. and Nishizuka Y. 1979. Persistence of responsiveness of adult mouse mammary gland to induction by embryonic mesenchyme. Dev. Biol. 72:201.PubMedCrossRefGoogle Scholar
  68. Sakakura T. 1987. Mammary embryogenesis. In: “The mammary gland: development, regulation and function,” (M. Neville and C.W. Daniel, eds.), Plenum Press, New York. p. 37.Google Scholar
  69. Shannnon J.M. and Pitelka D.R. 1981. The influence of cell shape on the induction of functional differentiation in mouse mammary cells in vitro. In Vitro 17:1016.CrossRefGoogle Scholar
  70. Shannon J.M., Mason R.J. and Jennings S.D. 1987. Functional differentiation of alveolar type II epithelial cells in vitro: effects of cell shape, cell-matirx interactions and cell-cell interactions. Biochem. Biophys. Acta 931:143.PubMedCrossRefGoogle Scholar
  71. Silberstein G.B. and Daniel C.W. 1982. Elvax 40P implants, sustained local release of bioactive molecules influencing the mammary ductal development. Dev. Biol. 93:272.PubMedCrossRefGoogle Scholar
  72. Silbertstein G.B. and Daniel C.W. 1982. Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev. Biol. 90:215.CrossRefGoogle Scholar
  73. Silbertstein G.B. and Daniel C.W. 1987. Reversible inhibition of mammary gland growth by transforming growth factor-β. Science 237:291.CrossRefGoogle Scholar
  74. Smith G.H. and Vonderhaar B.K. 1981. Functional differentiation in mouse mammary gland epithelium is attained through DNA synthesis, inconsequent of mitosis. Dev. Biol. 88:167.PubMedCrossRefGoogle Scholar
  75. Sporn M.B., Roberts A.B., Wakefield L.M. and de Crombrugghe B. 1987. Some recent advances in the chemistry and biology of transforming growth factor-β. J. Cell Biol. 105:1039.PubMedCrossRefGoogle Scholar
  76. Streuli C.H., Ram T.G. and Bisseil, M.J. 1988. Basement membrane involvement in mammary gland differentiation. J. Cell Biol. 107:663a.Google Scholar
  77. Streuli C.H., Ram T.G. and Bisseil M.J. 1989. Expression of extracellular matrix components is regulated by substrata. Submitted.Google Scholar
  78. Suard Y.M.L., Haeuptle M-T., Fairnon E. and Kraehenbuhl J-P. 1983. Cell proliferation and milk protein gene expression in rabbit mammary cell cultures. J. Cell Biol. 96:1435.PubMedCrossRefGoogle Scholar
  79. Topper Y.J. and Freeman C.S. 1980. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049.PubMedGoogle Scholar
  80. Vlodavsky I., Folkman J., Sullivan R., Fridman R., Ishai-Michaile R., Sasse J. and Klagsbrun M. 1987. Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci. (USA) 84:2292.CrossRefGoogle Scholar
  81. Vonderhaar B.K. and Smith G.H. 1982. Dissociation of cytological and functional differential in virgin mouse mammary gland during inhibition of DNA synthesis. J. Cell Biol. 53:97.Google Scholar
  82. Warburton M.J., Mitchell D., Ormerod E.J. and Rudland P. 1982. Distribution of myoepithelial cells and basement membrane proteins in the resting pregnant, lactating and involuting rat mammary gland. J. Histochem. Cytochem. 30:667.PubMedCrossRefGoogle Scholar
  83. Warburton M.J., Monoghan P., Ferns S.A., Rudland P.S., Perusinghe N. and Chung A.E. 1984. Distribution of entactin in the basement membrane of the rat mammary gland. Expt. Cell Res. 152:240.CrossRefGoogle Scholar
  84. Watt F.M. 1986. The extracellular matrix and cell shape. TIBS 11:482.Google Scholar
  85. Wessells N.K. 1977. “Tissue interactions and development.” Benjamin/Cummings, CaliforniaGoogle Scholar
  86. Wicha M.S., Liotta L.A., Vonderhaar B.K. and Kidwell W.R. 1980. Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Dev. Biol. 80:253.PubMedCrossRefGoogle Scholar
  87. Wicha M.S., Lowrie G., Kohn E., Bagavandoss P. and Mahn T. 1982. Extracellular matrix promotes mammary epithelial growth and differentation in vitro. Proc. Natl. Acad. Sci. (USA) 79:3213.CrossRefGoogle Scholar
  88. Wicha M.S. 1984. Interaction of rat mammary epithelium with extracellular matrix components. In: “New approaches to the study of benign prostatic hyperplasia,” (F.A. Kimball, A.E. Buhl and D.B. Canter, eds.), Alan R. Liss, New York. p. 129.Google Scholar
  89. Wiens D., Park C.S. and Stockdale F.E. 1987. Milk protein expression and ductal morphogenesis in the mammary gland in vitro: Hormone-dependent and-independent phases of adipocyte-mammary epithelial cell interaction. Dev. Biol. 120:245.PubMedCrossRefGoogle Scholar
  90. Wilde C.J., Hasan H.R. and Mayer R.J. 1984. Comparison of collagen gels and mammary extracellular matrix as substrata for study of terminal differentiation in rabbit mammary epithelial cells. Expt. Cell Res. 151:519.CrossRefGoogle Scholar
  91. Yang J., Elias J.J., Petrakis N.L., Wellings S.R. and Nandi S. 1981. Effects of hormones and growth factors on human mammary epithelial cells in collagen gel culture. Cancer Research 41:1021.PubMedGoogle Scholar
  92. Zwiebel J.A., Davis M., Kohn E., Salomon D.S. and Kidwell W.R. 1982. Anchorage-independent growth-conferring factor production by rat mammary tumor cells. Cancer Research 42:5117.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • M. H. Barcellos-Hoff
    • 1
  • M. J. Bissell
    • 1
  1. 1.Division of Cell and Molecular BiologyLawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations