Skip to main content

A Role for the Extracellular Matrix in Autocrine and Paracrine Regulation of Tissue-Specific Functions

  • Chapter

Part of the book series: Reproductive Biology ((RBIO))

Abstract

How can the knowledge gained in characterizing a functional epithelial cell model in culture shed light on the autocrine and paracrine mechanisms of gene regulation? Our purpose in presenting the following brief description of mammary epithelial cell culture is two-fold. First, to suggest that functional cells should be prerequisite for studying the effects and relationships between the cell and the multitude of growth factors and hormones that interact with tissues. Second, to emphasize the role of the extracellular matrix (ECM) in obtaining the “correct” functional phenotype for epithelial cells in culture. These aims are by no means all inclusive. There are many new and interesting reports of the effects of growth factors in mammary gland that we will not discuss in detail here, including exciting research that addresses how ECM and soluble factors interact in vivo. For example, the recent results indicating that transforming growth factor-β (TGF-β) acts as a negative regulator of ductal growth in virgin gland (Silbertstein and Daniel, 1987) may involve the ECM, since TGF-β appears to be intimately involved in synthesis and degradation of ECM molecules (Sporn et al., 1987).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barcellos-Hoff M.H., Neville P.N., Aggeler J. and Bisseil M.J. 1987. Polarized secretion by mammary epithelial cell cultures on EHS-matrix. J. Cell Biol. 105:220a.

    Google Scholar 

  • Barcellos-Hoff M.H., Aggeler J., Ram T.G. and Bissell M.J. 1989. Functional differentiation and alveolar morphogenesis of primary mammary epithelial cells cultures on reconstituted basement membrane. Development 105:225.

    Google Scholar 

  • Baskin J.B., Shannon J.M. and Clark R.A.F. 1987. Early events in the multicellular organization of human epidermal cells on basement membrane matrix. J. Cell Biol. 105:223a.

    Google Scholar 

  • Bissell D.M., Arenson D.M., Maher J.J. and Roll F.J. 1987. Support of cultured hepatocytes by a laminin-rich gel. J. Clin. Invest. 79:801.

    Article  PubMed  CAS  Google Scholar 

  • Bissell M.J. 1981. The differentiated state of normal and malignant cells or how to define a “normal” cell in culture. Int. Rev. Cytol. 70:27.

    Article  PubMed  CAS  Google Scholar 

  • Bissell M.J., Hall H.G. and Parry G. 1982. How does the extracellular matrix direct gene expression?. J. Theor. Biol. 99:31.

    Article  PubMed  CAS  Google Scholar 

  • Bissell M.J. and Hall H.G. 1987. Form and function in the mammary gland: The role of extracellular matrix. In: “The mammary gland: development, regulation and function” (M. Neville and C. Daniel, eds.), Plenum Press, New York. p. 97.

    Google Scholar 

  • Bissell M.J., Lee EY-H., Li M-L., Chen L-H. and Hall H.G. 1985. Role of extracellular matrix and hormones in modulation of tissue-specific functions in culture: mammary gland as a model for endocrine sensitive tissues. In: “Benign prostatic hyperplasia, Vol. II” (C.H. Rogers, D.C. Coffey, G.R. Cunha, eds.), NIH Publication No. 87-2881, Washington, D.C. p. 39.

    Google Scholar 

  • Bissell M.J. and Aggeler J. 1987. Dynamic reciprocity: How do extracellular matrix and hormones direct gene expression? In: “Mechanisms of signal transduction by hormones and growth factors” (M. Cabot, ed.), Alan R. Liss, New York. p. 251.

    Google Scholar 

  • Bissell M.J., Li M.L., Chen L-H. and Lee EY-H. 1987. Regulation of milk proteins in the mouse mammary epithelial cells by extracellular matrix and hormones. In: “Growth and differentiation of mammary epithelial cells in culture” (J. Enami and R. Ham, eds.), Scientific Society Press, Tokyo, Japan, p. 155.

    Google Scholar 

  • Blau H., Guzowski D.E., Siddiqi Z.A., Scarpelli E.M. and Bienkowski R.S. 1988. Fetal type 2 pneumocytes form alveolar-like structures and maintain long-term differentiation on extracellular matrix. J. Cell. Physiol. 136:203.

    Article  PubMed  CAS  Google Scholar 

  • Blum J.L., Zeigler M.E. and Wicha M.S. 1987. Regulation of rat mammary gene expression by extracellular components. Expt. Cell Res. 173:322.

    Article  CAS  Google Scholar 

  • Burwen S.J. and Pitelka D.R. 1980. Secretory function of lactating mouse mammary epithelial cells cultured on collagen gels. Expt. Cell Res. 126:249.

    Article  CAS  Google Scholar 

  • Chen L-H. and Bissell M.J. 1987. Transferrin mRNA level in the mouse mammary gland is regulated by pregnancy and extracellular matrix. J. Biol. Chem. 262:17247.

    PubMed  CAS  Google Scholar 

  • Chiquet-Ehrismann R., Mackie E.J., Pearson C.A. and Sakakura T. 1986. Tenascin: An extracellualr matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell 47:131.

    Article  PubMed  CAS  Google Scholar 

  • Daniel C.W. and Silberstein G.B. 1987. Postnatal development of the rodent mammary gland. In: “The mammary gland: development, regulation and function,” (M. Neville and C. Daniel, eds.), Plenum Press Publishing Corp., New York. p. 3.

    Google Scholar 

  • David G. and Bernfield M. 1979. Collagen reduces glycosaminoglycan degradation by cultured mammary epithelial cells: Possible mechanism for basal lamina formation. Proc. Natl. Acad. Sci. (USA) 76:786.

    Article  CAS  Google Scholar 

  • David G., Nusgens B., van der Schueren B., Cauweriberge D.V., van der Berghe B. and Lapiere C. 1987. Collagen metabolism and basement membrane formation in cultures of mouse mammary epithelial cells. Expt. Cell Res. 170:402.

    Article  CAS  Google Scholar 

  • Dulbecco R., Henahan M. and Armstrong B. 1982. Cell types and morphogenesis in the mammary gland. Proc. Natl. Acad. Sci. (USA) 79:7346.

    Article  CAS  Google Scholar 

  • Dulbecco R., Allen W.R., Bologna M. and Bowman M. 1986. Marker evolution during the development of the rat mammary gland: stem cells identified by markers and the role of myoepithelial cells. Cancer Research 46:2449.

    PubMed  CAS  Google Scholar 

  • Ehmann U.K., Peterson W.D.Jr. and Misfeldt D.S. 1984. To grow mouse mammary epithelial cells in culture. J. Cell Biol. 98:1026.

    Article  PubMed  CAS  Google Scholar 

  • Emerman J.T. and Bissell M.J. 1988. Cultures of mammary epithelial cells: Extracellular matrix and functional differentiation. In: “Advances in cell culture,” (K. Maramorosch and G.H. Sato, eds.), Academic Press, San Diego, CA. p. 137.

    Google Scholar 

  • Emerman J.T., Bartley J.C. and Bissell M.J. 1980. Interrelationship of glycogen metabolism and lactose synthesis in mammary epithelial cells of mice. Biochem J. 192:695.

    PubMed  CAS  Google Scholar 

  • Emerman J.T. and Pitelka D.R. 1977. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13:316.

    Article  PubMed  CAS  Google Scholar 

  • Emerman J.T., Enami J., Pitelka D.R. and Nandi S. 1977. Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc. Natl. Acad. Sci. (USA) 74:4466.

    Article  CAS  Google Scholar 

  • Emerman J.T., Bartley J.C. and Bissell M.J. 1981. Glucose metabolite patterns as markers of functional differentiation in freshly isolated and cultured mouse mammary epithelial cells. Expt. Cell Res. 134:241.

    Article  CAS  Google Scholar 

  • Flynn S., Yang J. and Nandi S. 1982. Growth and differentiation of primary cultures of mouse mammary epithelium embedded in collagen gel. Differentiation 22:191.

    Article  PubMed  CAS  Google Scholar 

  • Hadley M.A., Byers S.W., Suarez-Quian C.A., Kleinman H. and Dym M. 1985. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J. Cell Biol. 101:1511.

    Article  PubMed  CAS  Google Scholar 

  • Haeuptle M-T., Suard Y.L.M., Bogenmann E., Reggio H., Racine L. and Kraehenbuhl J-P. 1983. Effect of cell shape change on the function and differentiation of rabbit mammary cells in culture. J. Cell Biol. 96:1425.

    Article  PubMed  CAS  Google Scholar 

  • Hall H.G., Farson D.A. and Bissell M.J. 1982. Lumen formation by epithelial cell lines in response to collagen overlay: A morphogenetic model in culture. Proc. Natl. Acad. Sci. (USA) 79:4672.

    Article  CAS  Google Scholar 

  • Haslam S.Z. and Levely M.L. 1985. Estrogen responsiveness of normal mouse mammary cells in primary cell culture: Association of mammary fibroblasts with estrogenic regulation of progesterone receptors. Endocrinology 116:1835.

    Article  PubMed  CAS  Google Scholar 

  • Haslam S.Z. 1986. Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogen in vitro. Cancer Research 46:310.

    PubMed  CAS  Google Scholar 

  • Hobbs A.A., Richards D.A., Kessler D.J. and Rosen J.M. 1982. Complex hormonal regulation of rat casein gene expression. J. Biol. Chem. 257:3598.

    PubMed  CAS  Google Scholar 

  • Imagawa W., Tomocka Y., Hamamoto S. and Nandi S. 1985. Stimulation of mammary epithelial cell growth in vitro: Interaction of epidermal growth factor and mammogenic hormones. Endocrinology 116:1514.

    Article  PubMed  CAS  Google Scholar 

  • Ingber D.E., Madri J.A. and Jamieson D.J. 1986. Basement membrane as a spatial organizer of polarized epithelia. Amer. J. Pathol. 122:129.

    CAS  Google Scholar 

  • Kratochwil K. 1969. Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev. Biol. 20:46.

    Article  PubMed  CAS  Google Scholar 

  • Lee EY-H., Parry G. and Bissell M.J. 1984. Modulation of secreted proteins of mouse mammary epithelial cells by the extracellular matrix. J. Cell Biol. 98:146.

    Article  PubMed  CAS  Google Scholar 

  • Lee EY-H., Lee W-H., Kaetzel C.S., Parry G. and Bissell M.J. 1985. Interaction of mouse mammary epithelial cells with collagenous substrata: Regulation of casein gene expression and secretion. Proc. Natl. Acad. Sci. (USA) 82:1419.

    Article  CAS  Google Scholar 

  • Lee EY-H., Barcellos-Hoff M.H., Chen L-H., Parry G. and Bisseil M.J. 1987. Transferrin is a major mouse milk protein and is synthesized by mammary epithelial cells. In Vitro Cell Dev. Biol. 23:221.

    Article  PubMed  CAS  Google Scholar 

  • Levine J.F. and Stockdale F.E. 1984. 3T3-L1 adipocytes promote the growth of mammary epithelial. Expt. Cell Res. 151:112.

    Article  CAS  Google Scholar 

  • Levine J.F. and Stockdale F.E. 1985. Cell-cell interations promote mammary epithelial cell differentiation. J. Cell Biol. 100:1415.

    Article  PubMed  CAS  Google Scholar 

  • Li M.L., Aggeler J., Farson D.A., Hatier C., Hasseil J. and Bisseil M.J. 1987. Influence of a reconstituted basement membrane and its components on casein gene expession and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. (USA) 84:136.

    Article  CAS  Google Scholar 

  • Liu S., Sanfilippo B., Perroteau I., Derynck R., Salomon S.S. and Kidwell W.R. 1987. Expression of transforming growth factor alpha in differentiated rat mammary tumors: estrogen induction of transforming growth factor alpha production. Mol. Endocrinol. 1:683.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Hernandez A., Fink L.M. and Pierce G.B. 1976. Removal of basement membrane in the involuting breast. Lab. Invest. 34:455.

    PubMed  CAS  Google Scholar 

  • Medina D., Li M.L., Oborn C.J. and Bissell M.J. 1987. Casein gene expression in mouse mammary epithelial cell lines: dependence upon extracellular matrix and cell type. Expt. Cell Res. 172:192.

    Article  CAS  Google Scholar 

  • Mercier J-C. and Gaye P. 1983. Milk protein synthesis. In: “Biochemistry of lactation,” (T.B. Mepham, ed.), Elsevier Science Publishers, Amsterdam, p. 177.

    Google Scholar 

  • Mohanam S., Salomon D.S. and Kidwell W.R. 1988. Substratum modulation of epidermal growth factor receptor expression by normal mouse mammary cells. J. Dairy Sci. 71:1507.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan P., Warburton M.J., Perusinghe N. and Rudland P.S. 1983. Topographical arrangement of basement membrane proteins in lactating rat mammary gland: Comparison of the distribution of type IV collagen, laminin, fibronectin, and Thy-1 at the ultrasturctuai level. Proc. Natl. Acad. Sci. (USA) 80:3344.

    Article  CAS  Google Scholar 

  • Neville M.C. and Peaker M. 1981. Ionized calcium in milk and the integrity of the mammary epithelium in the goat. J. Physiol. 313:561.

    PubMed  CAS  Google Scholar 

  • Neville M.C., Stahl L., Lutes C., Bissell M.J. and Barcellos-Hoff M.H. 1987. A scanning electron microscope study of the morphogenesis of mouse mammary cultures on collagen gels and EHS matrix. J. Cell Biol. 105:139a.

    Google Scholar 

  • Ormerod E.J. and Rudland P.S. 1985. Isolation and differentiation of cloned epithelial cell lines form normal rat mammary glands. In Vitro Cell Dev. Biol. 21:143.

    Article  PubMed  CAS  Google Scholar 

  • Ormerod E.J. and Rudland P.S. 1988. Mammary gland morphogenesis in vitro: Extracellular requirements for the formation of tubules in collagen gels by a cloned rat mammary epithelial cell line. In Vitro Cell Dev. Biol. 24:17.

    Article  PubMed  CAS  Google Scholar 

  • Parry G., Lee EY-H. and Bissell M.J. 1982. Modulation of the differentiated phenotype of cultured mouse mammary epithelial cells by collagen substrata. In: “The extracellular matrix,” (S.P. Hawkes and G. Wang, eds.), Academic Press, New York. p. 303.

    Google Scholar 

  • Parry G., Lee EY-H., Farson D.A., Koval N. and Bissell M.J. 1985. Collagenous substrata regulate the nature and distribution of glycosaminoglycans produced by differentiated cultures of mouse mammary epithelial cells. Expt. Cell Res. 156:487.

    Article  CAS  Google Scholar 

  • Penman S., Fulton A., Capeo D., Ben-Ze’ev A., Willtelsberger S. and Tse C.F. 1981. Cytoplasmic and nuclear architechture in cells and tissue: Form, function and mode of assembly. Cold Spring Harbor Symp. Quant. Biol. 46:1013.

    Article  CAS  Google Scholar 

  • Pickett P.B., Pitelka D.R., Hamamoto S.T. and Misfeldt D.S. 1975. Occluding junctions and cell behavior in primary cultures of normal and neoplastic mammary gland cells. J. Cell Biol. 66:316.

    Article  PubMed  CAS  Google Scholar 

  • Pitelka D.R., Hamamoto S.T., Duafala J.G. and Nemanic M.K. 1973. Cell contacts in the mouse mammary gland. J. Cell Biol. 56:797.

    Article  PubMed  CAS  Google Scholar 

  • Pitelka D.R., Hamamoto S.T. and Taggart B.N. 1980. Basal lamina and tissue recognition in malignant mammary tumors. Cancer Research 40:1600.

    PubMed  CAS  Google Scholar 

  • Raber J.M. and D’Ambrosio S.M. 1986. Isolation of single cell suspensions from the rat mammary gland: Separation, characterization, and primary culture of various cell populations. In Vitro Cell Dev. Biol. 22:429.

    Article  PubMed  CAS  Google Scholar 

  • Richards J., Guzman R., Konrad M., Yang J. and Nandi S. 1982. Growth of mouse mammary gland end buds cultured in a collagen gel matrix. Expt. Cell Res. 141:433.

    Article  CAS  Google Scholar 

  • Richards J., Pasco D., Yang J., Guzman R. and Nandi S. 1983. Comparison of the growth of normal and neoplastic mouse mammary cells on plastic, on collagen gels and in collagen gels. Expt. Cell Res. 146:1.

    Article  CAS  Google Scholar 

  • Rinehart C.A., Irigaray M.F., Lyn-Cook B.D. and Kaufman D.G. 1987. An in vitro model system for the organogenesis of human edometrial secretory glands. J. Cell Biol. 105:42a.

    Google Scholar 

  • Robbins S.L. and Cottran R.S. 1979. Pathologic basis of disease. W.B. Sanders Co., Philadelphia

    Google Scholar 

  • Rosen J.M., Matusik R.J., Richards D.A., Gupt P. and Rodgers J.R. 1980. Multihormonal regulation of casein gene expression at the transcriptional and post-transcriptional levels in the mammary gland. Recent Prog. Horm. Res. 36:157.

    PubMed  CAS  Google Scholar 

  • Russo J. and Russo I.H. 1980. Influence of differentiation and cell kinetics on the susceptibility of the rat mammary gland to carcinogenesis. Cancer Research 40:2677.

    PubMed  CAS  Google Scholar 

  • Sakakura T., Nishizuka Y. and Dawe C.J. 1976. Mesenchyme-dependent morphogenesis and epithelium-specific cytodifferentiation in mouse mammary gland. Science 194:1439.

    Article  PubMed  CAS  Google Scholar 

  • Sakakura T., Sakagami Y. and Nishizuka Y. 1979. Persistence of responsiveness of adult mouse mammary gland to induction by embryonic mesenchyme. Dev. Biol. 72:201.

    Article  PubMed  CAS  Google Scholar 

  • Sakakura T. 1987. Mammary embryogenesis. In: “The mammary gland: development, regulation and function,” (M. Neville and C.W. Daniel, eds.), Plenum Press, New York. p. 37.

    Google Scholar 

  • Shannnon J.M. and Pitelka D.R. 1981. The influence of cell shape on the induction of functional differentiation in mouse mammary cells in vitro. In Vitro 17:1016.

    Article  Google Scholar 

  • Shannon J.M., Mason R.J. and Jennings S.D. 1987. Functional differentiation of alveolar type II epithelial cells in vitro: effects of cell shape, cell-matirx interactions and cell-cell interactions. Biochem. Biophys. Acta 931:143.

    Article  PubMed  CAS  Google Scholar 

  • Silberstein G.B. and Daniel C.W. 1982. Elvax 40P implants, sustained local release of bioactive molecules influencing the mammary ductal development. Dev. Biol. 93:272.

    Article  PubMed  CAS  Google Scholar 

  • Silbertstein G.B. and Daniel C.W. 1982. Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev. Biol. 90:215.

    Article  Google Scholar 

  • Silbertstein G.B. and Daniel C.W. 1987. Reversible inhibition of mammary gland growth by transforming growth factor-β. Science 237:291.

    Article  Google Scholar 

  • Smith G.H. and Vonderhaar B.K. 1981. Functional differentiation in mouse mammary gland epithelium is attained through DNA synthesis, inconsequent of mitosis. Dev. Biol. 88:167.

    Article  PubMed  CAS  Google Scholar 

  • Sporn M.B., Roberts A.B., Wakefield L.M. and de Crombrugghe B. 1987. Some recent advances in the chemistry and biology of transforming growth factor-β. J. Cell Biol. 105:1039.

    Article  PubMed  CAS  Google Scholar 

  • Streuli C.H., Ram T.G. and Bisseil, M.J. 1988. Basement membrane involvement in mammary gland differentiation. J. Cell Biol. 107:663a.

    Google Scholar 

  • Streuli C.H., Ram T.G. and Bisseil M.J. 1989. Expression of extracellular matrix components is regulated by substrata. Submitted.

    Google Scholar 

  • Suard Y.M.L., Haeuptle M-T., Fairnon E. and Kraehenbuhl J-P. 1983. Cell proliferation and milk protein gene expression in rabbit mammary cell cultures. J. Cell Biol. 96:1435.

    Article  PubMed  CAS  Google Scholar 

  • Topper Y.J. and Freeman C.S. 1980. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049.

    PubMed  CAS  Google Scholar 

  • Vlodavsky I., Folkman J., Sullivan R., Fridman R., Ishai-Michaile R., Sasse J. and Klagsbrun M. 1987. Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci. (USA) 84:2292.

    Article  CAS  Google Scholar 

  • Vonderhaar B.K. and Smith G.H. 1982. Dissociation of cytological and functional differential in virgin mouse mammary gland during inhibition of DNA synthesis. J. Cell Biol. 53:97.

    CAS  Google Scholar 

  • Warburton M.J., Mitchell D., Ormerod E.J. and Rudland P. 1982. Distribution of myoepithelial cells and basement membrane proteins in the resting pregnant, lactating and involuting rat mammary gland. J. Histochem. Cytochem. 30:667.

    Article  PubMed  CAS  Google Scholar 

  • Warburton M.J., Monoghan P., Ferns S.A., Rudland P.S., Perusinghe N. and Chung A.E. 1984. Distribution of entactin in the basement membrane of the rat mammary gland. Expt. Cell Res. 152:240.

    Article  CAS  Google Scholar 

  • Watt F.M. 1986. The extracellular matrix and cell shape. TIBS 11:482.

    CAS  Google Scholar 

  • Wessells N.K. 1977. “Tissue interactions and development.” Benjamin/Cummings, California

    Google Scholar 

  • Wicha M.S., Liotta L.A., Vonderhaar B.K. and Kidwell W.R. 1980. Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Dev. Biol. 80:253.

    Article  PubMed  CAS  Google Scholar 

  • Wicha M.S., Lowrie G., Kohn E., Bagavandoss P. and Mahn T. 1982. Extracellular matrix promotes mammary epithelial growth and differentation in vitro. Proc. Natl. Acad. Sci. (USA) 79:3213.

    Article  CAS  Google Scholar 

  • Wicha M.S. 1984. Interaction of rat mammary epithelium with extracellular matrix components. In: “New approaches to the study of benign prostatic hyperplasia,” (F.A. Kimball, A.E. Buhl and D.B. Canter, eds.), Alan R. Liss, New York. p. 129.

    Google Scholar 

  • Wiens D., Park C.S. and Stockdale F.E. 1987. Milk protein expression and ductal morphogenesis in the mammary gland in vitro: Hormone-dependent and-independent phases of adipocyte-mammary epithelial cell interaction. Dev. Biol. 120:245.

    Article  PubMed  CAS  Google Scholar 

  • Wilde C.J., Hasan H.R. and Mayer R.J. 1984. Comparison of collagen gels and mammary extracellular matrix as substrata for study of terminal differentiation in rabbit mammary epithelial cells. Expt. Cell Res. 151:519.

    Article  CAS  Google Scholar 

  • Yang J., Elias J.J., Petrakis N.L., Wellings S.R. and Nandi S. 1981. Effects of hormones and growth factors on human mammary epithelial cells in collagen gel culture. Cancer Research 41:1021.

    PubMed  CAS  Google Scholar 

  • Zwiebel J.A., Davis M., Kohn E., Salomon D.S. and Kidwell W.R. 1982. Anchorage-independent growth-conferring factor production by rat mammary tumor cells. Cancer Research 42:5117.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Barcellos-Hoff, M.H., Bissell, M.J. (1989). A Role for the Extracellular Matrix in Autocrine and Paracrine Regulation of Tissue-Specific Functions. In: Krey, L.C., Gulyas, B.J., McCracken, J.A. (eds) Autocrine and Paracrine Mechanisms in Reproductive Endocrinology. Reproductive Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5751-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5751-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5753-7

  • Online ISBN: 978-1-4684-5751-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics