Lipocortins and Related Proteins may be Involved in Intracellular Signal Transduction

  • Harry T. Haigler
Part of the Reproductive Biology book series (RBIO)


Recent studies have defined a family of structurally related proteins which bind to certain phospholipids in Ca2+-dependent manner (Crompton et al., 1988). Several names have been proposed for this family including annexins, lipocortins, and calpactins. Although the biological function is not known for any of these proteins, they are attracting intensive investigation because of their potential involvement in Ca2+-mediated stimulus-response coupling.


Rous Sarcoma Virus Primary Amino Acid Sequence Dependent Binding Amino Terminal Domain Amino Acid Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Breitbart R.E., Andreadis A., and Nadal-Ginard B. 1987. Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Ann. Rev. Biochem. 56:467.PubMedCrossRefGoogle Scholar
  2. Burns A.L., Magendzo K., Shirvan A., Srivastava M., Rojas E., Alijani M.R., and Pollard H. 1989. Calcium channel activity of purified human synexin and structure of the synexin gene. Proc. Natl. Acad. Sci. (USA) in press.Google Scholar
  3. Cheng Y.S-E. and Chen L.B. 1981. Detection of phosphotyrosine-containing 36,000 dalton protein in the framework of cells transformed with Rous sarcoma virus. J. Cell Biol. 104:503.Google Scholar
  4. Cirino G., Flower R.J., Browning J.L., Sinclair L.K., and Pepinsky R.B. 1987. Recombinant human lipocortin I inhibits thromboxane release from guinea pig isolated perfused lung. Nature (London) 328:270.CrossRefGoogle Scholar
  5. Creutz C.E., Zaks W.J., Hamman H.C., Crane S., Martin W.H., Gould K.L., Oddie K.M., and Parsons S.J. 1987. Identification of chromaffin granule-binding proteins. J. Biol. Chem. 262:1860.PubMedGoogle Scholar
  6. Crompton M.R., Moss S.E., and Crompton M.J. 1988. Diversity on the lipocortin/calpactin family. Cell 55:1.PubMedCrossRefGoogle Scholar
  7. Crompton M.R., Owens R.J., Totty N.F., Moss S.W., Waterfield M.D., and Crompton M.J. 1988. Primary structure of the human, membrane-associated Ca2+-binding protein p68: a novel member of a protein family. EMBO J. 7:21.PubMedGoogle Scholar
  8. Davidson F.F., Dennis E.A., Powell M., and Glenney J.R. 1987. Inhibition of phospholipase A2 by “lipocortins” and calpactins. J. Biol. Chem. 262:1698.PubMedGoogle Scholar
  9. De B.K., Misono K.S., Lukas T., Mroczkowski B., and Cohen S. 1986. A calcium-dependent 35 kilodalton substarte for epidermal growth factor receptor/kinase isolated from normal tissue. J. Biol. Chem. 261:13784.PubMedGoogle Scholar
  10. DiRosa M., Flower R., Hirata F., Parente L., and Russo-Marie F. 1984. Anti-phospholipase proteins. Prostaglandins 28:441.CrossRefGoogle Scholar
  11. Erikson R.L., Collett M.S., Erikson E., Purchio A.F., and Brugge J.S. 1979. Protein phosphorylation mediated by partially purified avian sarcoma virus transforming gene product. Cold Spring Harbor Symp. Quant. Biol. 44:907.CrossRefGoogle Scholar
  12. Fernandez M.P., Selmin O., Martin G.R., Yamada Y., Pfaffle M., Deutzmann R., Mollenhauer J. and von der Mark K. 1988. The structure of anchorin II, a collagen binding protein isolated from chondrocyte membrane. J. Biol. Chem. 263:5921.Google Scholar
  13. Funakoshi T., Heimark R.L., Hendrickson L.E., McMullen B.A. and Fujikawa K. 1987a. Human placental anticoagulant protein: Isolation and characterization. Biochem. 26:5572.CrossRefGoogle Scholar
  14. Funakoshi T., Hendrickson L.E., McMullen B.A. and Fujikawa K. 1987b. Primary structure of human placental anti-coagulant protein. Biochem. 26:8087.CrossRefGoogle Scholar
  15. Geisow M.J., Fritsche U., Hexham J.M., Dash B. and Johnson T. 1986. A consensus amino acid sequence repeat in Torpedo and mammalian Ca2+-dependent membrane binding proteins. Nature (London) 320:636.CrossRefGoogle Scholar
  16. Gerke V. and Weber K. 1984. Identity of a p36k phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders: calcium dependent binding to non-erythroid spectrin and F-actin. EMBO J. 3:227.PubMedGoogle Scholar
  17. Giugni T.D., James L.C., and Haigier H.T. 1985. Epidermal growth factor stimulates tyrosine phosphorylation of specific proteins in permeabilized human fibroblasts. J. Biol. Chem. 261:15081.Google Scholar
  18. Glenney J.R. 1986. Phospholipid dependent Ca2+-binding by the 36kd tyrosine kinase substrate (calpactin) and its 33kd core. J. Biol.Chem. 261:7247.PubMedGoogle Scholar
  19. Glenney J.R. 1986. Two related but distinct forms of the 36000 M tyrosine substrate (calpactin) which interact with phospholipid and actin in a Ca2+-dependent manner. Proc. Natl. Acad. Sci. (USA) 83:4258.CrossRefGoogle Scholar
  20. Glenney J.R., Jr. and Tack B. 1985. Amino-terminal sequence of p36 and associated p10: identification of the site of tyrosine phosphorylation and homology with S-100. Proc. Nat1. Acad. Sci. (USA) 82:7884.CrossRefGoogle Scholar
  21. Gould K.L., Woodgett J.R., Isacke C.M., and Hunter T. 1986. The proteintyros ine kinase substrate p36 is also a substrate for protein kinase C in vitro and in vivo. Mol. Cell. Biol. 6:2738.PubMedGoogle Scholar
  22. Haigler H.T., Schlaepfer D.D., and Burgess W.H. 1987. Characterization of lipocortin I and an immunologically unrelated 33kDa protein as epidermal growth factor receptor/kinase substrates and phospholipase A2 inhibitors. J. Biol. Chem. 262:6921.PubMedGoogle Scholar
  23. Huang K.-S., Wallner B.P., Mattaliano R.J., Tizard R., Burne C., Frey A., Hession C., McGray P., Sinclair L.K., Chow E.P., Browning J.L., Ramachandran K.L., Tang J., Smart J.E. and Pepinsky R.B. 1986. Two human 35kd inhibitors of phospholipase A2 are related to substrate of pp60 v-src and of the epidermal growth factor receptor / kinase. Cell 46:191.PubMedCrossRefGoogle Scholar
  24. Iwasaki A., Suda M., Nakao H., Nagoya T., Saino Y., Arai K., Mizoguchi T., Sato F., Yoshizaki H., Hirata M., Miyata T., Shidara Y., Murata M., and Maki M. 1987. Structure and expression of cDNA for an inhibitor of blood coagulation isolated from human placenta: A new lipocortin-like protein. J. Biochem. 102:1261.PubMedGoogle Scholar
  25. Iwata M. and Ishizaka K. 1987. In vitro modulation of antigen-primed T cells by a glycosylation-inhibiting factor that regulates the formation of antigen-specific suppressive factors. Proc. Natl. Acad. Sci. (USA) 84:2444.CrossRefGoogle Scholar
  26. Kaplan R., Jaye M., Burgess W.H., Schlaepfer D.D., and Haigler H.T. 1988. Cloning and expression of cDNA for human endonexin II, a Ca++ and phospholipid binding protein. J. Biol. Chem. 263:8034.Google Scholar
  27. Kretsinger R.H. 1980. Structure and evolution of calcium-modulated proteins. CRC Crit. Rev. Biochem. 8:119.PubMedCrossRefGoogle Scholar
  28. Mollenhauer J. and von der Mark K. 1983. Isolation and characterization of a collagen-binding glycoprotein from chondrocyte membranes. EMBO J. 2:45.PubMedGoogle Scholar
  29. Pepinsky R.B., Sinclair L.K., Browning J.L., Mattaliano R.J., Smart J.E., Chow E.P., Falbel T., Ribolini A., Garwin J.L., and Wallner B.P. 1986. Purification and partial sequence analysis of a 37-kDa protein that inhibits phospholipase A2 activity from rat peritoneal exudates. J. Biol. Chem. 261:4239.PubMedGoogle Scholar
  30. Pepinsky R.B., Tizard R., Mattaliano R.J., Sinclair L.K., Miller G.T., Browning J.L., Chow E.P., Burne C., Huang K.-S., Pratt D., Wachter L., Hession C., Frey A.Z., and Wallner B.P. 1988. Five distinct calcium and phospholipid binding proteins share homology with lipocortin I. J. Biol. Chem. 263:10799.PubMedGoogle Scholar
  31. Pfaffle M., Ruggiero R., Hofmann H., Fernandez M.P., Selmin O., Yamada Y., Garrone R., and von der Mark K. 1988. Biosynthesis, secretion and extracellular localization of anchorin II, a collagen-binding protein of the calpactin family. EMBO J. 7:2335.PubMedGoogle Scholar
  32. Radke K. and Martin G.S. 1979. Transformation by Rous sarcoma virus: Effects of src gene expression on the synthesis and phosphorylation of cellular polypeptides. Proc. Natl. Acad. Sci. (USA) 70:5212.CrossRefGoogle Scholar
  33. Saris C.J.M., Tack B.F., Kristensen T., Glenney J.R. and Hunter T. 1986. The cDNA sequence for the protein-tyrosine kinase substrate (calpactin I heavy chain) reveals a multidomain protein with internal repeats. Cell 4:201.CrossRefGoogle Scholar
  34. Sawyer S.T. and Cohen S. 1985. Epidermal growth factor stimulates the phosphorylation of the calcium-dependent 35,000-dalton substrate in intact A-431 cells. J. Biol. Chem. 260:8233.PubMedGoogle Scholar
  35. Schlaepfer D.D., Mehlman T., Burgess W.H., and Haigier H.T. 1987. Characterization of Ca2+-dependent phospholipid binding and phosphorylation of Lipocortin I. Proc. Natl. Acad. Sci. (USA) 84:6078.CrossRefGoogle Scholar
  36. Schlaepfer D.D. and. Haigler H.T. 1987. In vitro protein kinase C phosphorylation sites of placental lipocortin. J. Biol Chem. 262:6931.PubMedGoogle Scholar
  37. Schlaepfer D.D. and Haigler H.T. 1988. Structural and functional characterization of endonexin II, a calcium-and phospholipid-binding protein. Biochem. 27:4253.CrossRefGoogle Scholar
  38. Shadle P.J., Gerke V., and Weber K. 1985. Three Ca++-binding proteins from porcine liver and intestine differ immunologically and physicochemicall and are distinct in Ca++ affinities. J. Biol. Chem. 260:16354.PubMedGoogle Scholar
  39. Smith V.L. and Dedman J.R. 1986. An immunologic comparison of several novel calcium-binding proteins. J. Biol. Chem. 261:15815.PubMedGoogle Scholar
  40. Sudhof T.C., Slaughter C.A., Leznicki I., Barjon P., and Reynolds G.A. 1988. Human 67-kDa calelectrin contains a duplication of four repeats found in 35kDa lipocortins. Proc. Natl. Acad. Sci. (USA) 85:664.CrossRefGoogle Scholar
  41. Wallner B.P., Mattaliano R.J., Hession C., Cate R.L., Tizard R., Sinclair L.K., Foeller C., Chow E.P., Browning J.L., Ramachandran K.L. and Pepinsky R.B. 1986. Cloning and expression of human lipocortin; a phospholipase A2 inhibitor with potential antiinflammatory actvity. Nature (London) 320:77.CrossRefGoogle Scholar
  42. Weber K., Johnsson N., Plessmann U., Plessmann Van P.N., Soling H.-D., Ampe C., and Vandekerckhove J. 1987. The amino acid sequence of protein II and its phosphorylation site for protein kinase C; the domain structure of Ca++-modulated lipid-binding proteins. EMBO J. 6:1599.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Harry T. Haigler
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of CaliforniaIrvineUSA

Personalised recommendations