Advertisement

2D-NMR for 3D-Structure of Membrane Spanning Polypeptides: Gramacidin A and Fragments of Bacteriorhodopsin

  • V. F. Bystrov
  • A. S. Arseniev
  • I. L. Barsukov
  • A. L. Lomize
  • G. V. Abdulaeva
  • A. G. Sobol
  • I. V. Maslennikov
  • A. P. Golovanov
Part of the NATO ASI Series book series (NSSA, volume 183)

Abstract

Spatial structures of gramicidin A (GA) and the bacteriorhodopsin (BR) fragments in membrane mimetic milieu have been determined by NMR spectroscopy. GA incorporated into SDS micelles adopts the conformation of the monovalent cation selective transmembrane channel, i.e. head-to-head dimer formed by two right-handed π6.3 LD-helices. Interaction of impermeable Mn(II) ions with the channel was studied by paramagnetic induced proton relaxation and their preferred binding sites were evaluated. Additional results on synthetic GA analogs reveal structure-functional relationships and mechanism of channel unfolding. In contrast to micelles, organic solvents induce formation of four distinct GA double helices (parallel and antiparallel) with 5.6 residues per turn. In organic solvent in the presence of caesium salt the right-handed antiparallel double helix with 7.2 residues per turn becomes a dominant species. Discrepancies and similarities with the results obtained by other techniques are discussed.

BR and its proteolytic fragments when extracted by gel chromatography in methanol-chloroform mixture retain unique native conformations as detected by NMR and CD spectra. The tertiary structure of BR was probed by 19F NMR of [5-F]Trp BR. 2D NMR unequivocally defines conformations of the BR membrane spanning proteolytic and synthetic fragments as right-handed α-helices of about 20 residues each.

NMR strategy for spatial structure analysis of transmembrane polypeptides is discussed. The GA and BR study illustrates two feasible NMR approaches to the conformational analysis of intrinsic membrane polypeptides. The first utilizes the artificial quasimembrane system in which the molecule adopts its native structure. In the second use is made of the properly chosen solvent which preserves the conformation formed by the molecule in the natural membrane environment.

Keywords

Double Helix Sodium Dodecyl Sulphate Micelle Purple Membrane Transmembrane Channel Helical Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulaeva, G.V., Sychev, S.V. and Tsetlin, V.l., 1987, CD and IR study of the secondary structure of bacteriorhodopsin and its fragments in model systems, Biol. Membrany (Sov. J. Biol. Membr.) 4:1254.Google Scholar
  2. Andersen, O.S., 1984, Gramicidin channels, Ann. Rev. Physiol. 46:531.CrossRefGoogle Scholar
  3. Arseniev, A.S., Barsukov, I.L., Sychev, S.V., Bystrov, V.F., Ivanov, V.T. and Ovchinnikov, Yu.A., 1984a, Double helical conformation of gramicidin, Biol. Membrany (Sov. J. Biol. Membr.) 1:5.Google Scholar
  4. Arseniev, A.S., Bystrov, V.F., Ivanov, V.T. and Ovchinnikov, Yu.A., 1984b, NMR solution conformation of gramicidin A double helix, FEB S Lett. 165:51.CrossRefGoogle Scholar
  5. Arseniev, A.S., Barsukov, I.L. and Bystrov, V.F., 1985a, NMR solution structure of gramicidin A complex with a caesium cations, FEBS Lett. 180:33.CrossRefGoogle Scholar
  6. Arseniev, A.S., Barsukov, I.L., Bystrov, V.F., Lomize, A.L. and Ovchinnikov, Yu. A., 1985b, 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices, FEBS Lett. 186:168.Google Scholar
  7. Arseniev, A.S., Barsukov, I.L., Bystrov, V.F. and Ovchinnikov, Yu.A., 1986a, Spatial structure of gramicidin A transmembrane ion channel — NMR analysis in micelles, Biol. Membrany (Sov. J. Biol. Membr.) 3:437.Google Scholar
  8. Arseniev, A.S., Lomize, A.L., Barsukov, I.L. and Bystrov, V.F., 1986b, Gramicidin A transmembrane ion-channel. Three-dimensional structure reconstruction based on NMR spectroscopy and energy refinement, Biol. Membrany (Sov. J. Biol. Membr.) 3:1077.Google Scholar
  9. Arseniev, A.S., Kuryatov, A.B., Tsetlin, V.l., Bystrov, V.F., Ivanov, V.T. and Ovchinnikov, Yu.A., 1987, 19F NMR study of 5-fluorotryptophan-labeled bacteriorhodopsin, FEBS Lett. 213:283.Google Scholar
  10. Arseniev, A.S., Maslennikov, I.V., Bystrov, V.F., Kozhich, A.T., Ivanov, V.T. and Ovchinnikov, Yu.A., 1988, Two-dimensional 1H-NMR study of bacteriorhodopsin-(34–65)-polypeptide conformation, FEBS Lett. 231:81.CrossRefGoogle Scholar
  11. Bamberg, E. and Lauger, P., 1977, Channel formation kinetics of gramicidin A in lipid bilayer membranes, J. Membr. Biol. 35:351.CrossRefGoogle Scholar
  12. Barsukov, I.L., 1987, “NMR study of conformational heterogeniety of gramicidin A in solutions,” PhD thesis, Shemyakin Institute, Moscow.Google Scholar
  13. Barsukov, I.L., Arseniev, A.S. and Bystrov, V.F., 1987a, Spatial structure of gramicidin A in organic solvents. 1H-NMR analysis of four species in ethanol, Bioorg. Khim. (Sov. J. Bioorg. Chem.) 13:1501.Google Scholar
  14. Barsukov, I.L., Lomize, A.L., Arseniev, A.S. and Bystrov, V.F., 1987b, Spatial structure of succinyl-bis(desformyl)gramicidin A in micelles. NMR conformational analysis, Biol. Membrany (Sov. J. Biol. Membr.) 4:171.Google Scholar
  15. Braun, W., Bosctv, Ch., Brown, L.R., Go, N. and Wüthrich, K., 1981, Combined use of proton-proton Overhauser enchancements and a geometry algorithm for determination of polypeptide conformation. Application to micelle-bound glucagon, Biochim. Biophys. Acta 667:377.CrossRefGoogle Scholar
  16. Braun, W., Wider, G., Lee, K.H. and Wüthrich K., 1983, Conformation of glucagon in a lipid-water interphase by 1H nuclear magnetic resonance, J. Mol. Biol. 169:921.CrossRefGoogle Scholar
  17. Brown, L.R., Braun, W., Anil-Kumar, G. and Wüthrich K., 1982, High resolution nuclear magnetic resonance studies of the conformation and orientation of mellitin bound to a lipid-water interface, Biophys J. 37:319.CrossRefGoogle Scholar
  18. Bystrov, V.F., 1985, NMR and rotational angles in solution conformation of polypeptides, J. Mol. Str. 126:529.ADSCrossRefGoogle Scholar
  19. Bystrov, V.F., Arseniev, A.S., Barsukov, I.L. and Lomize, A.L., 1987, 2D NMR of single and double stranded helices of gramicidin A in micelles and solutions, Bull. Magn. Resonance 8:84.Google Scholar
  20. Bystrov, V.F. and Arseniev, A.S., 1988, Diversity of the gramicidin A spatial structure: two-dimensional 1H NMR study in solution, Tetrahedron 44:925.CrossRefGoogle Scholar
  21. Dencher, N.A. and Heyn, M.P., 1979, Formation and properties of bacteriorhodopsin monomers in the non-ionic detergents octyl-β-D-glucoside and triton X-100, FEBS Lett. 96:322.CrossRefGoogle Scholar
  22. Dubos, R.J., 1939, Bacterial agent extracted from a soil bacillus. I. Preparation of the agent. Its activity in vitro., J. Exp. Med. 70:1.CrossRefGoogle Scholar
  23. Elliot, J.R., Needham, D., Dilger, J.P. and Haydon, D.A., 1983, The effect of bilayer thickness and tension on gramicidin single-channel lifetime, Biochim. Biophys. Acta 735:95.CrossRefGoogle Scholar
  24. Fonina, L., Demina, A., Sychev, S., Irkin, A., Ivanov V. and Hlavacek, J., 1982, Synthesis, structure and membrane properties of gramicidin A dimer analogs, in: “Chemistry of Peptides and Proteins”, vol. 1, W. Voelter, J. Wünsh, Yu. Ovchinnikov and V. Ivanov, eds., Walter de Gruyer, West Berlin, p. 260.Google Scholar
  25. Golovanov, A.P., Barsukov, L.I., Arseniev, A.S., Bystrov, V.F., Sukhanov, S.V. and Barsukov, I.L., 1989a, The divalent cation-binding sites of gramicidin A transmembrane ion-channel, submitted for publication.Google Scholar
  26. Golovanov, A.P., Sukhanov, S.V. and Barsukov, L.I., 1989b, Mn2+ and Cd2+ influence on the ionic conductance of gramicidin A channels, Biol. Membrany (Sov. J. Biol. Membr.), in press.Google Scholar
  27. Gronenborn, A.M. and Clore, G.M., 1989, Three-dimensional structures of proteins in solution by nuclear magnetic resonance spectroscopy, Protein Seq. Data Anal. 2:1.Google Scholar
  28. Henderson, R. and Unwin, P.N.T., 1975, Three dimensional model of purple membrane obtained by electron microscopy, Nature 257:28.ADSCrossRefGoogle Scholar
  29. Higashijima, T., Wakamatsu, K., Milon, A., Okada, A. and Miyazawa, T., 1988, Conformational analysis of physiologically active peptides in membrane-bound state: correlation with physiological activity, in: “Peptide Chemistry 1987”, T. Shiba and S. Sakakibara, eds., Protein Research Foundation, Osaka, p. 679.Google Scholar
  30. Hladky, S.B. and Haydon, D.A., 1972, Ion transfer across lipid membrane in the presence of gramicidin A. I. Studies of the unit conductance channel, Biochim. Biophys Acta 274:294CrossRefGoogle Scholar
  31. Huang, K.-S., Ramachandran, R., Bayley, H. and Khorana, H.G., 1982, Orientation of retinal in bacteriorhodopsin as studied by cross-linking using photosensitive analog of retinal, J. Biol.Chem. 257:13616.Google Scholar
  32. Khorana, H.G., Gerber, G.E., Herlihy, W.G., Gray, C.P., Anderegg, R.J., Niheu, K. and Biemann, K., 1979, Amino acid sequence of bacteriorhodopsin, Proc. Natl. Acad. Sci. USA 76:5046.ADSCrossRefGoogle Scholar
  33. Khorana, H.G., 1988, Bacteriorhodopsin, a membrane protein that uses light to translocate proton, J. Biol. Chem. 263:7439.Google Scholar
  34. Kuryatov, A.B., Ovechkina, G.V., Alyonycheva, T.N., Minaeva, L.P. and Tsetlin V.l., 1984, Byosynthetic 19F- and 14C-derivatives of bacteriorhodopsin, Bioorg. Khim. (Sov. J. Bioorg. Chem.) 10:333.Google Scholar
  35. Langs, D.A., 1988, Three-dimensional structure at 0.86 Å of the uncomlexed form of the transmembrane ion channel peptide gramicidin A, Science 241:188.ADSCrossRefGoogle Scholar
  36. Lee, K.H., Fitton, J.E. and Wüthrich, K., 1987, Nuclear magnetic resonance investigation of the conformation of 8-haemolysin bound to dodecylphosphocholine micelles, Biochim. Biophys. Act 911:144.CrossRefGoogle Scholar
  37. Long, M.M. and Urry, D.W., 1981, Absorption and circular dichroism spectroscopies, in: “Membrane Spectroscopy”, E. Grell, ed., Springer, West Berlin, p. 143.CrossRefGoogle Scholar
  38. Maslennikov, I.V., Arseniev, A.S. and Bystrov, V.F., 1988, Spatial structure of N-acetyl(desformyl)gramicidin A in micelles, Biol. Membrany (Sov. J. Biol. Membr.) 5:459.Google Scholar
  39. Masotti, L., Spisni A. and Urry, D.W., 1980, Conformational studies on the gramicidin A transmembrane channel in lipid micelles and liposomes, Cell. Biophys. 2:241.Google Scholar
  40. Mazer, N.A., Benedek, B.B. and Carey, M.C., 1976, An investigation of the micellar phase of sodium dodecyl sulfate in aqueous sodium chloride solutions using quasielastic light scattering spectroscopy, J. Phys. Chem. 80:1075.CrossRefGoogle Scholar
  41. McDonald, C.C. and Philips, W.D., 1967, Manifestation of the tertiary structures of proteins in high-frequency nuclear magnetic resonance, J Amer. Chem. Soc. 89:6332.CrossRefGoogle Scholar
  42. Momany, F.A., McGuire, R., Burgess, A.W. and Sheraga, H.A., 1975, Energy parameters in polypeptides. 7. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occuring amino acids, J. Phys. Chem. 79:2631.CrossRefGoogle Scholar
  43. Myers, V.B. and Haydon, D.A., 1972, Ion transfer across lipid membranes in the presence of gramicidin A, Biochim. Biophys. Acta 274:313.CrossRefGoogle Scholar
  44. Neher, E., 1975, Ionic specificity of the gramicidin channel and the thallous ion, Biochim. Biophys. Acta 401:540.CrossRefGoogle Scholar
  45. Nemethy, G., Pottle, M.S. and Sheraga, H.A., 1983, Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonding interactions and hydrogen bond interactions for naturally occuring amino acids, J. Phys. Chem. 87:1883.CrossRefGoogle Scholar
  46. Ovchinnikov, Yu.A. and Ivanov, V.T., 1975, Conformational states and biological activity of cyclic peptides, Tetrahedron 31:2177.CrossRefGoogle Scholar
  47. Ovchinnikov, Yu.A., Abdulaev N.G., Feigina, M.Yu., Kiselev, A.V. and Lobanov, N.A., 1979, The structural basis of the functioning of bacteriorhodopsin: an overview, FEBS Lett. 100:219CrossRefGoogle Scholar
  48. Ovchinnikov, Yu.A., 1982, Rhodopsin and bacteriorhodopsin: structure-function relationships, FEBS Lett. 148:179.CrossRefGoogle Scholar
  49. Ovchinnikov, Yu.A., Abdulaev N.G., Vasilov, R.G., Vturina, I.Yu., Kuryatov, A.B. and Kisilev, A.V., 1985, The antigenic structure and topography of bacteriorhodopsin in purple membranes as determined by interaction with monoclonal antibodies, FEBS Lett. 179:343.CrossRefGoogle Scholar
  50. Paulus, H., Sarkar, N., Mukherjee, P.K., Langley, D., Ivanov, V.T., Shepel, E.N. and Veatch W.R., 1979, Comparison of the effect of linear gramicidin A analogues on bacterial sporulation, membrane permeability and ribonucleic acid polymerase, Biochemistry 18:4532.CrossRefGoogle Scholar
  51. Prasad, K.U., Alonso-Romanowski, S., Venkatachalam, C.M., Trapane, T.L. and Urry D.W., 1986, Synthesis, characterization, and black lipid membrane studies of [7-L-alanine]gramicidin A, Biochemistry 25:456.CrossRefGoogle Scholar
  52. Ramachandran, G.N. and Chandrasekharan, R., 1972, Conformation of peptide chainsGoogle Scholar
  53. containing both L and D-residues: Part 1 — Helical structures with alternating L- and D-residues with special reference to LD-ribbon and LD-helices, Indian J. Biochem. Biophys. 9:1; Studies on dipeptide conformation and on peptide with sequences of alternating L and D residues with special reference to antibiotic and ion transport peptide, Progr. Peptide Res. 2:195.Google Scholar
  54. Sarges, R. and Witkop, B., 1965, Gramicidin A. 5. The structure of valine and isoleucine-gramicidin A, J. Amer, Chem. Soc. 87:2011.Google Scholar
  55. Sychev, S.V. and Ivanov, V.T., 1984, Conformational states of gramicidin A in phospholipid liposomes, Biol. Membrany (Sov. J. Biol. Membr.) 11:1109.Google Scholar
  56. Szabo, G. and Urry, D.W., 1979, N-acetyl gramicidin: single channel properties and implications for channel structure, Science 203:55.ADSCrossRefGoogle Scholar
  57. Tsetlin V.l., Alyonycheva T.N., Shemyakin V.V., Neiman L.A. and Ivanov V.T., 1988, Tritium thermal activation study of bacteriorhodopsin topography, Eur. J. Biochem. 178:123.CrossRefGoogle Scholar
  58. Urry, D.W., Goodall, M.C., Glickson, D. and Mayers, F., 1971, The gramicidin A transmembrane channel: characteristics of head-to-head dimerized πLD helices, Proc. Nat. Acad. Sci. USA 68:1907.ADSCrossRefGoogle Scholar
  59. Urry, D.W., Venkatachalam, C.M., Spisni, A., Lauger, P. and Khaled, M.A., 1980, Rate theory calculation of gramicidin single-channel currents using NMR-derived rate constants, Proc. Nat. Acad. Sci. USA 77:2028.ADSCrossRefGoogle Scholar
  60. Urry, D.W., Trapane, T.L. and Prasad, K.U., 1983, Is the gramicidin A transmembrane channel single stranded or double-stranded helix? A simple unequivocall determination, Science 221:1064.ADSCrossRefGoogle Scholar
  61. Urry, D.W., 1987, NMR relaxation studies of alkali metal ion interactions with the gramicidin A transmembrane channel, Bull. Magn. Resonance 9:109.Google Scholar
  62. Veatch, W.R. and Blout E.R., 1974, The agrégation of gramicidin A in solution, Biochemistry 13:5257.CrossRefGoogle Scholar
  63. Veatch, W.R., Fossel, E.T. and Blout, E.R., 1974, The conformation of gramicidin A, Biochemistry 13:5249.CrossRefGoogle Scholar
  64. Veatch, W.R. and Stryer, L., 1977, The dimeric nature of the gramicidin A transmembrane channel: conductance and fluorescence energy transfer studies of hybrid channels, J. Mol. Biol. 113:89.CrossRefGoogle Scholar
  65. Wakamatsu, K., Higashijima, T., Nakajima, T., Fujino, M. and Miyazawa, T., 1984, 1H-NMR analysis of conformation of mastoparans as bound to phospholipid bilayer, in: “Peptide Chemistry 1983”, E. Munekatta, ed., Protein Research Foundation, Osaka, p.237.Google Scholar
  66. Wakamatsu, K., Okada, A., Miyazawa, T., Masui, Y., Sakakibara, S. and Higashijima, T., 1987, Conformation of yeast a-mating factor and analog peptides as bound to phospholipid bilayer. Correlation of membrane-bound conformation with physiological activity, Eur J. Biochem. 163:331.CrossRefGoogle Scholar
  67. Wallace, B.A., Veatch, W.R. and Blout, E.R., 1981, Conformation of gramicidin A in phospholipid vesicles: circular dichroism studies of effects of ion binding, chemical modification and lipid structure, Biochemistry 20:5754.CrossRefGoogle Scholar
  68. Wallace, B.A. and Mao, D., 1984, Circular dichroism analysis of membrane proteins: an examination of differential light scattering and absorption flattering effects in large membrane vesicles and membrane sheets, Analyt. Biochem. 142:317.CrossRefGoogle Scholar
  69. Wallace, B.A., 1987, The structure of gramicidin A, a transmembrane ion channel, in: “Ion transport through membranes”, K. Yagi and B. Pullman, eds., Academic Press, New York, p. 255.Google Scholar
  70. Wallace, B.A. and Ravikumar, K., 1988, The gramicidin pore, Science 241:182.ADSCrossRefGoogle Scholar
  71. Wieder, G., Lee, K.H. and Wüthrich, K., 1982, Sequential resonance assignments in protein 1H-NMR spectra: glucagon bound to perdeuterated dodecylphosphocholine micelles, J. Mol. Biol. 155:367.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • V. F. Bystrov
    • 1
  • A. S. Arseniev
    • 1
  • I. L. Barsukov
    • 1
  • A. L. Lomize
    • 1
  • G. V. Abdulaeva
    • 1
  • A. G. Sobol
    • 1
  • I. V. Maslennikov
    • 1
  • A. P. Golovanov
    • 1
  1. 1.Shemyakin Institute of Bioorganic ChemistryUSSR Academy of SciencesMoscowUSSR

Personalised recommendations