Comparison of the Secondary Structures of Human Class I and Class II MHC Antigens by Ftir and CD Spectroscopy

  • Joan C. Gorga
  • Aichun Dong
  • Mark C. Manning
  • Robert W. Woody
  • Winslow S. Caughey
  • Jack L. Strominger
Part of the NATO ASI Series book series (NSSA, volume 183)


Considerable evidence exists that the structures of class I and class II histocompatibility antigens are similar. Most of the evidence (summarized in Kappes and Strominger, 1988 and Brown et al., 1988) is based on sequence homologies and similarities in domain structure at both the protein and DNA levels. In addition, some T cells that are specific for either class I or class II molecules use the same receptor (Rupp et al, 1985; Marrack and Kappler, 1986). However, the secondary structures of purified class I and class II antigens have not been directly compared.


Secondary Structure Circular Dichroism Protein Secondary Structure Histocompatibility Antigen Circular Dichroism Band 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, J., Lee, D.C., Baldwin, S.A. and Chapman, D., 1987, Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter, J. Biol. Chem. 262:3502.Google Scholar
  2. Amzel, L.M. and Poljak, R.J., 1979, Three-dimensional structure of immunoglobulins, Ann. Rev. Biochem. 48:961.CrossRefGoogle Scholar
  3. Becker, J.W. and Reeke, G.N., 1985, Three-dimensional structure of β2-microglobulin, Froc. Natl. Acad. Sci. USA 82:4225.ADSCrossRefGoogle Scholar
  4. Bjorkman, P.J., Saper, M.A., Samraoui, B., Bennett, W.S., Strominger, J.L. and Wiley, D.C., 1987a, Structure of the human class I histocompatibility antigen, HLA-A2, Nature 329:506.ADSCrossRefGoogle Scholar
  5. Bjorkman, P.J., Saper, M.A., Samraoui, B., Bennett, W.S., Strominger, J.L. and Wiley, D.C., 1987b, The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens, Nature 329:512.ADSCrossRefGoogle Scholar
  6. Bjorkman, P.J., Strominger, J.L. and Wiley, D.C., 1985, Crystallization and x-ray diffraction studies on the histocompatibility antigens HLA-A2 and HLA-A28 from human cell membranes, J. Mol. Biol. 186:205.CrossRefGoogle Scholar
  7. Bolotina, I.A., Chekhov, V.O., Lugauskas, V.Yu. and Ptitsyn, O.B., 1981, Determination of the secondary structure of proteins from the circular dichroism spectra. II. Consideration of the contribution of ß-bends, Mol. Biol. (English Translation of Molekul. Biol.) 14:709.Google Scholar
  8. Braiman, M.S. and Rothschild, K.J., 1988, Fourier transform infrared techniques for probing membrane protein structure, Ann. Rev. Biophys. Biophys. Chem. 17:541.CrossRefGoogle Scholar
  9. Brown, J.H., Jardetzky, T., Saper, M.A., Samraoui, B., Bjorkman, P.J. and Wiley, D.C., 1988, A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules, Nature 332:845.ADSCrossRefGoogle Scholar
  10. Buus, S., Sette, A., Colon, S.M. and Grey, H.M., 1988, Autologous peptides constitutively occupy the antigen binding site on la, Science 242:1045.ADSCrossRefGoogle Scholar
  11. Chen, G.C. and Yang, J.T., 1977, Two-point calibration of circular dichrometer with d-10-camphorsulfonic acid, Anal. Lett. 10:1195.CrossRefGoogle Scholar
  12. Day, L.A., 1973, Circular dichroism and ultraviolet absorption of a deoxyribonucleic acid binding protein of filamentous bacteriophage, Biochemistry 12:5329.CrossRefGoogle Scholar
  13. Dong, A., Messerschmidt, R.G., Reffner, J.A. and Caughey, W.S., 1988, Infrared spectroscopy of a single cell-the human erythrocyte, Biochem. Biophys. Res. Comm. 156:752.CrossRefGoogle Scholar
  14. Green, N.M. and Melamed, M.D., 1966, Optical rotary dispersion, circular dichroism, and far-ultraviolet spectra of avidin and streptavidin, Biochem. J. 100:614.Google Scholar
  15. Gorga, J.C., Hazzard, J.H. and Caughey, W.S., 1985, Determination of anesthetic molecule environments by infrared spectroscopy. I. Effects of solvating molecule structure on nitrous oxide spectra, Arch. Biochem. Biophys. 240:734.CrossRefGoogle Scholar
  16. Gorga, J.C., Horejsí, V., Johnson, D.J., Raghupathy, R. and Strominger, J.L., 1987, Purification and characterization of class II histocompatibility antigens from a homozygous human B cell line, J. Biol. Chem. 262:16087.Google Scholar
  17. Hennessey, J.P., Jr. and Johnson, W.C., Jr., 1981, Information content in the circular dichroism of proteins, Biochemistry 20:1085.CrossRefGoogle Scholar
  18. Hider, R.C., Drake, A.F. and Tamiya, N., 1988, An analysis of the 225–230-nm CD band of elapid toxins, Biopolymers 27:113.CrossRefGoogle Scholar
  19. Isenman, D.E., Painter, R.H. and Dorrington, K.J., 1975, The structure and function of immunoglobulin domains: studies with β2-microglobulin on the role of the intrachain disulfide bond, Proc. Natl. Acad. Sci. USA 72:548.ADSCrossRefGoogle Scholar
  20. Johnson, W.C., Jr., 1988, Secondary structure of proteins through circular dichroism spectroscopy, Ann. Rev. Biophys. Biophys. Chem. 17:145.CrossRefGoogle Scholar
  21. Kappes, D. and Strominger, J.L., 1988, Human class II major histocompatibility complex genes and proteins, Ann. Rev. Biochem. 57:991.CrossRefGoogle Scholar
  22. Karlsson, F.A., 1974, Physical-chemical properties of β2-microglobulin, Immunochemistry 11:111.MathSciNetCrossRefGoogle Scholar
  23. Kauppinen, J.K., Moffat, D.J., Mantsch, H.H. and Cameron, D.G., 1981, Fourier self-deconvolution: a method for resolving intrinsically overlapped bands, Appl. Spectrosc. 35:271.ADSCrossRefGoogle Scholar
  24. Krimm, S. and Bandekar, J., 1986, Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins, Advances in Protein Chemistry 38:181.CrossRefGoogle Scholar
  25. Kwiatkoski, J.M. and Reffner, J.A., 1987, FT-IR microspectrometry advances, Nature 328:837.ADSCrossRefGoogle Scholar
  26. Lancet, D., Parham, P. and Strominger, J.L., 1979, Heavy chain of HLA-A and HLA-B antigens is conformationally labile: a possible role for β2-microglobulin, Proc. Natl. Acad. Sci. USA 76:3844.ADSCrossRefGoogle Scholar
  27. Levitt, M. and Greer, J., 1977, Automatic identification of secondary structure in globular proteins, J. Mol. Biol. 114:181.CrossRefGoogle Scholar
  28. Marrack, P. and Kappler, J., 1986, The antigen-specific, major histocompatibility complex-restricted receptor on T cells, Adv. Immunol. 38:1.CrossRefGoogle Scholar
  29. Parham, P., Alpert, B.N., Orr, H.T. and Strominger, J.L., 1977, Carbohydrate moiety of HLA antigens. Antigenic properties and amino acid sequences around the site of glycosylation, J. Biol. Chem. 252:7555.Google Scholar
  30. Provencher, S.W. and Glockner, J., 1981, Estimation of globular protein secondary structure from circular dichroism, Biochemistry 20:33.CrossRefGoogle Scholar
  31. Rupp, F., Acha-Orbea, H., Hengartner, H., Zinkernagel, R. and Joho, R., 1985, Identical Vß T-cell receptor genes used in alloreactive cytotoxic and antigen plus I-A specific helper T cells, Nature 315:425.ADSCrossRefGoogle Scholar
  32. Savitsky, A. and Golay, M.J.E., 1964, Smoothing and differentiation of data by simplified least squares procedures, Analyt. Chem. 36:1627.ADSCrossRefGoogle Scholar
  33. Sears, D.W. and Beychok, S., 1973, Circular dichroism, in :“Physical Principles and Techniques of Protein Chemistry,” Part C., F.J. Leach, ed., Academic Press, New York, 445.Google Scholar
  34. Surewicz, W.K. and Mantsch, H.H., 1988, New insight into protein secondary structure from resolution-enhanced infrared spectra, Biochem. Biophys. Acta 952:115.CrossRefGoogle Scholar
  35. Susi, H. and Byler, D.M., 1986, Resolution-enhanced Fourier transform infrared spectroscopy of enzymes, Meth. Enzymol. 130:290.CrossRefGoogle Scholar
  36. Susi, H., 1972, Infrared spectroscopy—conformation, Meth. Enzymol. 26:455.CrossRefGoogle Scholar
  37. Trägardh, L., Curman, B., Wiman, K., Rask, L. and Peterson, P.A., 1979, Chemical, physical chemical, and immunological properties of papain-solubilized human transplantation antigens, Biochemistry 18:2218.CrossRefGoogle Scholar
  38. Turner, M.J., Cresswell, P., Parham, P., Strominger, J.L., Mann, D.L. and Sanderson, A.R., 1975, Purification of papain-solubilized histocompatibility antigens from a cultured human lymphoblastoid line, RPMI4265, J. Biol. Chem. 250:4512.Google Scholar
  39. Woody, R.W., 1978, Aromatic side-chain contributions to the far ultraviolet circular dichroism of peptides and proteins Biopolymers 17:1451.CrossRefGoogle Scholar
  40. Woody, R.W., 1987, Contributions of tryptophan side-chains to the far-ultraviolet circular dichroism of proteins, Proc. 2nd Intl. Conf. Circular Dichroism, Budapest, 38.Google Scholar
  41. Yang, J.T., Wu, C.-S.C. and Martinez, H.M., 1986, Calculation of protein conformation from circular dichroism, Method. Enzymol. 130:208.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Joan C. Gorga
    • 1
  • Aichun Dong
    • 2
  • Mark C. Manning
    • 2
  • Robert W. Woody
    • 2
  • Winslow S. Caughey
    • 2
  • Jack L. Strominger
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyHarvard UniversityCambridgeUSA
  2. 2.Department of BiochemistryColorado State UniversityFort CollinsUSA

Personalised recommendations