Site-Directed Mutagenesis and the Mechanism of Flavoprotein Disulphide Oxidoreductases

  • Richard N. Perham
  • Alan Berry
  • Nigel S. Scrutton
  • Mahendra P. Deonarain
Part of the NATO ASI Series book series (NSSA, volume 183)


Glutathione plays a critical role in the maintenance of reduced thiol groups in the cell and is of particular importance in the biosynthesis of DNA [for a review, see Holmgren, 1985]. Glutathione itself is maintained in a reduced form at the expense of NADPH by the action of the enzyme glutathione reductase (EC
$${\text{GSSG }} + {\text{ NADPH }} + {\text{ }}{{\text{H}}^ + } = {\text{ 2GSH }} + {\text{ AD}}{{\text{P}}^ + }$$


Glutathione Reductase Kinetic Mechanism Disulphide Bridge Human Enzyme Trypanothione Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berry, A., Scrutton, N.S. and Perham, R.N., 1989, Switching kinetic mechanism and putative proton donor by directed mutagenesis of glutathione reductase, Biochemistry 28:1264.CrossRefGoogle Scholar
  2. Brown, N. L., Ford, S. J., Pridmore, D. and Fritzinger, D. C., 1983, Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase, Biochemistry 22:4089.CrossRefGoogle Scholar
  3. Creighton, T.E., 1988, Disulphide bonds and protein stability, BioEssays 8:57.CrossRefGoogle Scholar
  4. Deonarain, M.P., Berry, A., Scrutton, N.S. and Perham, R.N., 1989, Alternative proton donors/acceptors in the catalytic mechanism of the glutathione reductase of Escherichia coli: the role of His-439 and Tyr-99, Biochemistry x in press.Google Scholar
  5. Fox, B. and Walsh, C.T., 1982, Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reductionOactive disulphide, J. Biol Chem. 257:2498.Google Scholar
  6. Fox, B. and Walsh, C.T., 1983, Mercuric reductase: Homology to glutathione reductase and lipoamide dehydrogenase. Iodoacetamide alkylation and sequence of the active site peptide, Biochemistry 22:4082.CrossRefGoogle Scholar
  7. Greer, S. and Perham, R.N., 1986, Glutathione reductase from Escherichia coli: cloning and sequence analysis of the gene and relationship to other flavoprotein disulphide oxidoreductases, Biochemistry 25:2736.CrossRefGoogle Scholar
  8. Holmgren, A., 1985, Thioredoxin, Annu. Rev. Biochem. 54:237.CrossRefGoogle Scholar
  9. Jaenicke, R., 1987, Folding and association of proteins, Progress in Biophys. and Mol. Biol. 49:117.CrossRefGoogle Scholar
  10. Karplus, P.A. and Schulz, G.E., 1987, Refined structure of glutathione reductase as 1.54 Å resolution, J. Mol. Biol. 195:701.CrossRefGoogle Scholar
  11. Karplus, P.A., Pai, E.F. and Schulz, G.E., 1989, A crystallographic study of the glytathione binding site of glytathione reductase at 0.3nm resolution, Eur. J. Biochem. 178:693.CrossRefGoogle Scholar
  12. Krauth-Siegel, R.L., Blatterspiel, R., Saleh, M., Schulz, G.E., Schirmer, R.H. and Untucht-Grau, R., 1982, Glutathione reductase from human erythrocytes. The sequences of the NADPH domain and of the interface domain, Eur. J. Biochem. 121:259.CrossRefGoogle Scholar
  13. Krauth-Siegel, R.L., Enders, B., Henderson, G.B., Fairlamb, A.H. and Schirmer, H.R., 1987, Trypanothione reductase from Trypanosoma cruzi. Purification and characterization of the crystalline enzyme, Eur. J. Biochem. 164:123.CrossRefGoogle Scholar
  14. Mannervik, B., 1973, A branching mechanism of glutathione reductase, Biochem. Biophys. Res. Commun. 53:1151.CrossRefGoogle Scholar
  15. Matthews, R. G., Ballou, D. P., Thorpe, C. and Williams, C. H., Jr., 1977, Ion pair formation in pig heart lipoamide dehydrogenase. Rationalization of pH profiles for reactivity of oxidized enzyme with dihydrolipoamide and 2-electron-reduced enzyme with lipoamide and iodoacetamide, J. Biol. Chem. 252:3199.Google Scholar
  16. Packman, L.C. and Perham, R.N., 1982, An amino acid sequence in the active site of lipoamide dehydrogenase from Bacillus stearothermophilus, FEBS Lett. 139:155.CrossRefGoogle Scholar
  17. Pai, E.F. and Schulz, G.E., 1983, The catalytic mechanism of glytathione reductase as derived from X-ray diffraction analyses of reaction intermediates, J. Mol. Biol. 258:1751.Google Scholar
  18. Perham, R.N., Harrison, R.A. and Brown, J.P., 1978, The lipoamide dehydrogenase component of the 2-oxo acid dehydrogenase multienzyme complexes of Escherichia coli, Biochem. Soc. Trans. 6:47.Google Scholar
  19. Perham, R.N., Packman, L.C. and Radford, S.E., 1987, 2-Oxo acid dehydrogenase multienzyme complexes: in the beginning and halfway there, in: “Kreb’s citric acid cycle -half a centry and still turning,” J. Kay and P.D.J. Weitzman, eds., Biochem. Soc. Symp. 54:67.Google Scholar
  20. Perry, L.J., and Wetzel, R., 1986, Unpaired cysteine-54 interferes with the ability of an engineered disulfide to stabilize T4 lysozyme, Biochemistry 25:733.CrossRefGoogle Scholar
  21. Reed, L.J., 1974, Multienzyme complexes, Ace. Chem. Res. 7:40.CrossRefGoogle Scholar
  22. Rice, D.W., Schulz, G.E. and Guest, J.R., 1984, Structural relationship between glutathione reductase and lipoamide dehydrogenase, J. Mol. Biol. 174:483.CrossRefGoogle Scholar
  23. Rüssel, M. and Model, P., 1988, Sequence of thioredoxin reductase from Escherichia coli. Relationship to other flavoprotein disulphide oxidoreductases, J. Biol. Chem. 263:9015.Google Scholar
  24. Sauer, R.T., Hehir, K., Stearman, R.S., Weiz, M.A., Jeitler-Nilsson, A., Suchanek, E.G., and Pabo, C.O., 1986, An engineered intersubunit disulfide enhances the stability and DNA binding of the N-terminal domain of λ-repressor, Biochemistry 25:5992.CrossRefGoogle Scholar
  25. Schierbeek, A.J., Swarte, M.B.A., Dijksta, B.W., Vriend, G., Read, R.J., Hol, W.G.J., Drenth, J. and Betzel, C., 1989, X-ray structure of lipoamide dehydrogenase from Azotobacter vinelandii determined by a combination of molecular and isomorphous replacement techniques, J. Mol. Biol. 206:365.CrossRefGoogle Scholar
  26. Scrutton, N.S., Berry, A. and Perham, R.N., 1987, Purfication and characterization of glutathione reductase encoded by a cloned and over-expressed gene in Escherichia coli, Biochem. J. 245:875.Google Scholar
  27. Scrutton, N.S., Berry, A. and Perham, R.N., 1988, Engineering of an intersubunit disulphide bridge in glutathione reductase from Escherichia coli, FEBS Lett. 24:46.CrossRefGoogle Scholar
  28. Shames, S.L., Fairlamb, A.H., Cerami, A. and Walsh, C.T., 1986, Purification and characterization of trypanothione reductase from Crithidiafasciculata, a newly discovered member of the family of disulphide-containing flavoprotein reductases, Biochemistry 25:3519.CrossRefGoogle Scholar
  29. Shames, S.L., Kimmel, B.E., Peoples, O.P., Agabian, N. and Walsh, C.T., 1988, Trypanothione reductase of Trypanosoma congolense: Gene isolation, primary sequence determination, and comparison to glutathione reductase, Biochemistry 27:5014.CrossRefGoogle Scholar
  30. Shaw, W.V., 1987, Protein Engineering. The design, synthesis and characterization of fictitious proteins, Biochem. J. 246:1.Google Scholar
  31. Stephens, P.E., Lewis, H.M., Darlison, M.G. and Guest, J.R., 1983, Nucleotide sequence of the lipoamide dehydrogenase gene of Escherichia coli K12, Eur. J. Biochem. 135:519.CrossRefGoogle Scholar
  32. Thieme, R., Pai, E.F., Schirmer, R.H. and Schulz, G.E., 1981, Three-dimensional structure of glutathione reductase at 2 Å resolution J. Mol. Biol. 151:763.CrossRefGoogle Scholar
  33. Wells, J.A. and Powers, D.B., 1986, In vivo formation and stability of engineered disulfide bonds in subtilisin, J. Biol. Chem. 261:6564.Google Scholar
  34. Wetzel, R., Perry, L.J., Baase, W.A. and Becktel, W.J., 1988, Disulfide bonds and thermal stability in T4 lysozyme, Proc. Natl. Acad. Sci. U.S.A. 85:401.ADSCrossRefGoogle Scholar
  35. Williams, C.H., Jr., 1976, Flavin containing dehydrogenases, in: “The Enzymes” 3rd edn., P.D. Boyer, ed., Academic Press, New York. 13:89.Google Scholar
  36. Williams, C.H., Jr., Arscott, L.D. and Schulz, G.E., 1982, Amino acid sequence homology between pig heart lipoamide dehydrogenase and human erythrocyte glutathione reductase, Proc. Natl. Acad. Sci. U.S.A. 79:2199.ADSCrossRefGoogle Scholar
  37. Wong, K.K., Vanoni, M.A. and Blanchard, J.S., 1988, Glutathione reductase: Solvent equilibrium and kinetic isotope effects, Biochemistry 27:7091.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Richard N. Perham
    • 1
  • Alan Berry
    • 1
  • Nigel S. Scrutton
    • 1
  • Mahendra P. Deonarain
    • 1
  1. 1.Department of BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations