Advertisement

Cloning, Sequencing and Expression of a New β-Galactosidase from the Extreme Thermophilic Sulfolobus Solfataricus

  • Mosè Rossi
  • Maria Vittoria Cubellis
  • Carla Rozzo
  • Marco Moracci
  • Rocco Rella
Part of the NATO ASI Series book series (NSSA, volume 183)

Abstract

The number of isolated microorganisms surviving and growing in extreme environmental conditions (60–110°C) is rapidly increasing (Stetter, 1986). Comparison of the biology of these thermophilic microorganisms and their successful strategy of living at such high temperatures requires an understanding of both their metabolism and the relationship between the structure and function of their cellular components. In particular, interest in the enzymes from these organisms is growing because their peculiar properties render them a considerable biotechnological potential and industrial tool. In fact, whereas conventional enzymes are irreversibly inactivated by heat, these enzymes, in addition to their thermophilic and thermostable characteristics, show an enhanced activity, in the presence of the common protein denaturants and organic solvents as well as proteolytic enzymes.

Keywords

Thermophilic Microorganism Methanosarcina Barkeri Extreme Thermophile Galactosidase Gene Methanococcus Voltae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckler, G.S., and Reeve, J.N., 1986, Conservation of primary structure in the hisl gene of the archaebacterium, Methanococcus vanielii, the subacterium Escherichia coli, and the eucaryote Saccharomyces cerevisiae, Mol. Gen. Genet. 204: 133.CrossRefGoogle Scholar
  2. Bokranz, M. and Klein, A., 1987, Nucleotide sequence of the methyl coenzyme M reductase gene cluster from Methanosarcina barken, Nucl. Acid. Res. 15: 4350.CrossRefGoogle Scholar
  3. Cubellis, M.V., Rozzo, C., Montecucchi, P. and Rossi, M. (manuscript in preparation).Google Scholar
  4. Fabry, S., Lang, J., Niermann, T., Vingron, M. and Hensel, R., 1989, Nucleotide sequence of the glyceraldehyde-3-phosphate dehydrogenase gene from the mesophilic methanogenic archaebacteria Methanobacterium bryantii and Methanobacteriwnformicicwn, Eur. J. Biochem. 179: 405.CrossRefGoogle Scholar
  5. Itoh, T., 1988, Complete nucleotide sequence of the ribosomal “A” protein operon from the archaebacterium Halobacterium halobium, Eur. J. Biochem. 176: 297.CrossRefGoogle Scholar
  6. Larsen, N., Leffer, H., Kjems, J. and Garret, R.A., 1986, Evolutionary divergence between the ribosomal RNA operons of Halococcus morrhuae and Desofurococcus mobilis, System Appl. Microbiol. 7: 49.CrossRefGoogle Scholar
  7. Lechner, K. and Boeck, A., 1987, Cloning and nucleotide sequence of the gene for an archaebacterial protein synthesis elongation factor Tu, Mol. Gen. Genet. 208: 523.CrossRefGoogle Scholar
  8. Maniatis, T., Fritsch, E.F. and Sambrook, J., 1982, Molecular Cloning, in: “A Laboratory Manual,” Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  9. Pisani, F.M., Relia, R., Rozzo, C., Raia, C.A., Nucci, R., Gambacorta, A., De Rosa, M. and Rossi, M., 1989, Thermostable β-galactosidase from the archaebacterium Sofolobus solfataricus. Purification and properties, Eur. J. Biochem. (in press).Google Scholar
  10. Reiter, W.D., Palm, P., Henschen, A., Lottspeich, F., Zillig, W. and Grampp, B., 1987, Identification and characterization of the genes creating three structural proteins of the Sulfolobus virus-like particle SSV 1, Mol. Gen. Genet. 206: 144.CrossRefGoogle Scholar
  11. Reiter, W.D., Palm, P. and Zillig, W., 1988, Transcription termination in the archaebacterium Sulfolobus: signal structure and linkage to transcription initiation, Nucl. Acids Res. 16: 2245.Google Scholar
  12. Souillard, N. and Sibold, L., 1986, Primary structure and expression of a gene homologous to nifH (Nitrogenase Fe protein) from the archaebacterium Methanococcus voltae, Mol. Gen. Genet. 203: 21.CrossRefGoogle Scholar
  13. Souillard, N., Magot, M., Possot, O. and Sibold, L., 1988, Nucleotide sequence of regions homologous to nifH (nitrogenase Fe protein) from the nitrogen-fixing archaebacteria Methanococcus thermolithotrophicus and Methanobacteriwn ivanovii, J. Mol. Evol. 27: 65.CrossRefGoogle Scholar
  14. Steuer, K.O., 1986, in: “Thermophiles: general molecular and applied microbiology,” T.D. Brock and J.K. Zeikus, eds., Wiley.Google Scholar
  15. Ulrich, J.T., McFeters, G.A. and Temple, K.L., 1972, Induction and characterization of ß-galactosidase in an extreme thermophile, J. Bacteriol. 110: 691.Google Scholar
  16. Wich, G., Leinfelder, W. and Boeck, A., 1987, Genes for stable RNA in the extreme thermophile Thermoproteus tenax: introns and transcription signals, EMBO J. 6: 523.Google Scholar
  17. Woese, C.R. and Wolfe, R.S., 1985, in: “The Bacteria,” C.R. Woese and R.S. Wolfe, eds., 8:561, Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Mosè Rossi
    • 1
    • 2
  • Maria Vittoria Cubellis
    • 2
  • Carla Rozzo
    • 1
  • Marco Moracci
    • 1
  • Rocco Rella
    • 1
  1. 1.Istituto di Biochimica delle Proteine ed EnzimologiaArco Felice, NaplesItaly
  2. 2.Dipartimento di Chimica Organica e BiologicaUniversità di NapoliNaplesItaly

Personalised recommendations