Advertisement

Exploitation of Geometric Redundancies as a Source of Phase Information in X-Ray Structure Analysis of Symmetric Protein Assemblies — Including a worked example: the three-dimensional structure of the icosahedral β60 capsid of heavy riboflavin synthase from Bacillus subtilis

  • Rudolf Ladenstein
  • Adelbert Bacher
Part of the NATO ASI Series book series (NSSA, volume 183)

Abstract

The construction of symmetric structures from asymmetric building blocks represents an important feature of nature and is studied by several disciplines of science from different viewpoints. In the field of molecular biology the symmetries of complex macromolecules are of special interest. They constitute the basis for structural organization and biological function in many cases. Maximum stability in oligomeric macromolecules is usually achieved by arranging the subunits in a symmetrical manner such that all of the subunits can form equivalent contacts.

Keywords

Asymmetric Unit Substrate Binding Site Icosahedral Symmetry Crystallographic Symmetry Icosahedral Capsid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, G. and Delbrück, 1968, in: “Structural Chemistry and Molecular Biology,” A. Rich and N. Davidson, eds., Freeman, San Francisco.Google Scholar
  2. Arndt, U.W. and Wonacott, A.J., 1977, The Screenless Rotation Method, in: “The Rotation Method in Crystallography,” North Holland Publ. Co., Amsterdam, p. 5.Google Scholar
  3. Bacher, A., Baur, R., Eggers, U., Härders, H., Otto, M.K. and Schnepple, H., 1980, Riboflavin Synthases of Bacillus Subtilis: Purification and Properties, J. Biol. Chem. 855:632.Google Scholar
  4. Bacher, A. and Ludwig, H.C., 1982, Ligand-Binding Studies on Heavy Riboflavin Synthase of Bacillus Subtilis, Eur. J. Biochem. 127:539.CrossRefGoogle Scholar
  5. Bacher, A., Ludwig, H.C., Schnepple, H. and Ben-Shaul, Y., 1986, Heavy Riboflavin Synthase from Bacillus Subtilis, J. Mol. Biol. 187:756.Google Scholar
  6. Bacher, A. and Mailänder, B., 1978, Biosynthesis of Riboflavin in Bacillus Subtilis: Function and Genetic Control of the Riboflavin Synthase Complex., J. Bacteriol. 134:476.Google Scholar
  7. Bacher, A., Schnepple, H., Mailänder, B., Otto, M.K., and Ben-Shaul, Y., 1980, “Structure and Function of the Riboflavin Synthase Complex of Bacillus Subtilis, in: Flavins and Flavoproteins,” K. Yagi & T. Yamano, eds., Japan Scientific Societies Press, Tokyo, p. 579.Google Scholar
  8. Bachmann, L., Becker, R., Leupold, G., Barth, M., Guckenberger, R. and Baumeister, W., 1985, Decoration and Shadowing of Freeze-etched Catalase Crystals, Ultramicroscopy 16:305.CrossRefGoogle Scholar
  9. Blow, D.M. and Crick, F.H.C., 1959, The Treatment of Errors in the Isomorphous Replacement Method, Acta Cryst. 12:794.CrossRefGoogle Scholar
  10. Blundell, T.L. and Johnson, L.N., 1976, Isomorphous Replacement, in: “Protein Crystallography,” Academic Press, New York, p.284.Google Scholar
  11. Bricogne, G., 1976, Methods and Programs for Direct-Space Exploitation of Geometric Redundancies, Acta Cryst. A32:832.Google Scholar
  12. Caspar, D.L.D., and Klug, A., 1962, Physical Principles in the Construction of Regular Viruses, Cold Spring Harbour Symp. Quant. Biol. 27:1.CrossRefGoogle Scholar
  13. Chothia, C., 1974, Hydrophobic bonding and accessible surface area in proteins, Nature 248:338.ADSCrossRefGoogle Scholar
  14. Cohen, C. and Parry, D. A.D., 1986, a-Helical coiled coils — a widespread motif in proteins, TIBS 11:245.Google Scholar
  15. Crowther, R.A., 1967, A Linear Analysis of the Non-Crystallographic Symmetry Problem, Acta Cryst. 22:758.CrossRefGoogle Scholar
  16. Crowther, R.A., 1969, The Use of Non-Crystallographic Symmetry for Phase Determination, Acta Cryst. 25:2572.Google Scholar
  17. Dickerson, R.E., Kendrew, J.C. and Strandberg, B.E., 1961, The Crystal Structure of Myoglobin; Phase Determination to a Resolution of 2 Å by the Method of Isomorphous Repacement, Acta Cryst. 14:1188.CrossRefGoogle Scholar
  18. Dodson, E.J., 1985, Molecular Replacement: The method and its problems, in: “Proceedings of the Daresbury Study Weekend on Molecular Replacement,” Daresbury Laboratory, p. 33.Google Scholar
  19. Harrison, S.C., 1984, Multiple modes of subunit association in the structures of simple spherical viruses, TIBS 9:345.Google Scholar
  20. Harrison, S.C., Olson, A.J., Schutt C.E., Winkler, F.K. and Bricogne, G., 1978, Tomato bushy stunt virus at 2.9 Å resolution, Nature 276:368.ADSCrossRefGoogle Scholar
  21. Hendrickson, W.A. and Lattmann, E.E., 1970, Representation of Phase Probability Distributions for Simplified Combination of Independent Phase Information, Acta Cryst. B26:136.Google Scholar
  22. Hogle, J.M., Chow, M. and Filman, D.J., 1985, Three-Dimensional Structure of Poliovirus at 2.9 Å Resolution, Science 229:1358.ADSCrossRefGoogle Scholar
  23. Huber, R., 1985, Experience with the application of Patterson search techniques, in: “Proceedings of the Daresbury Study Weekend on Molecular Replacement,” Daresbury Laboratory, p. 58.Google Scholar
  24. Jones, T.A., 1978, A Graphics Model Building and Refinement System for Macromolecules, J. Appl. Crystallogr. 11:268.CrossRefGoogle Scholar
  25. Karshikov, A. & Ladenstein, R., 1989, Electrostatic Effects in a Large Enzyme Complex: Subunit Interactions and Electrostatic Potential Field of the Icosahedral β60 Capsid of Heavy Riboflavin Synthase, Proteins 5:248.CrossRefGoogle Scholar
  26. Ladenstein, R., Bacher, A. and Huber, R., 1987, Some Observations of a Correlation Between the Symmetry of Large Heavy-Atom Complexes and Their Binding Sites on Proteins, J.Mol.Biol. 195:751.CrossRefGoogle Scholar
  27. Ladenstein, R. Ludwig, H.C. and Bacher, A., 1983, Crystallization and Preliminary X-Ray Diffraction Study of Heavy Riboflavin Synthase from Bacillus Subtilis, J. Biol. Chem. 258:1 1981.Google Scholar
  28. Ladenstein, R., Meyer, B., Huber, R., Labischinski, H., Bartels, K., Bartunik, H.D., Bachmann, L., Ludwig, H.C. and Bacher, A., 1986, Heavy Riboflavin Synthase from Bacillus Subtilis: Particle Dimensions, Crystal Packing and Molecular Symmetry, J. Mol. Biol. 187:870.CrossRefGoogle Scholar
  29. Ladenstein, R., Schneider, M., Huber, R., Bartunik, H.D., Wilson, K.S., Schott, K. and Bacher, A., 1988, Heavy Riboflavin Synthase from Bacillus subtilis: Crystal Structure Analysis of the Icosahedral β60 Capsid at 3.3 Å Resolution, J. Mol. Biol. 203:1045.CrossRefGoogle Scholar
  30. Liljas, L., 1986, The structure of spherical viruses, Progr. Biophys. Molec. Biol. 48:16.CrossRefGoogle Scholar
  31. Ludwig, H.C., Lottspeich, F., Henschen, A., Ladenstein, R. and Bacher, A., 1987, Heavy Riboflavin Synthase from Bacillus subtilis: Primary Structure of the ß Subunit, J. Biol. Chem. 262:1016.Google Scholar
  32. Ludwig, M.L., Pattridge, K.A., Smith, W.W., Jensen, L.H., and Watenpaugh, K.D., 1982, Comparison of Flavodoxin Structures, in: Flavins and Flavoproteins, V. Massey and C. H. Williams, eds., Elsevier, Amsterdam, p. 19.Google Scholar
  33. Luo, M., Vriend, G., Kamer, G., Minor, J., Arnold, E., Rossmann, M.G., Boege, U., Scraba, D.G., Duke, G.M. and Palmenberg, A.C., 1987, The Atomic Structure of Mengo Virus at 3.0 Å Resolution, Science 235:182.ADSCrossRefGoogle Scholar
  34. Main, P. and Rossmann, M.G., 1966, Relationships among Structure Factors due to Identical Molecules in Different Crystallographic Environments, Acta Cryst. 21:67.CrossRefGoogle Scholar
  35. Neuberger, G. and Bacher, A., 1986, Biosynthesis of Riboflavin: Enzymatic Formation of 6,7 — Dimethyl-8-Ribityllumazine by Heavy Riboflavin Synthase from Bacillus Subtilis, Biochem. Biophys. Res. Commun. 139:1111.CrossRefGoogle Scholar
  36. Otto, M.K. and Bacher, A., 1981, Ligand-Binding Studies on Light Riboflavin Synthase from Bacillus Subtilis, Eur J. Biochem. 115:511.CrossRefGoogle Scholar
  37. Plaut, G. W. E.and Harvey, R. A., 1971, The Enzymatic Synthesis of Riboflavin, Methods Enzymol. 18B:.515.CrossRefGoogle Scholar
  38. Rossmann, M.G., Arnold, E., Erickson, J.W., Frankenberger, E.A., Griffith, J.P., Hecht, H.J., Johnson, J.E., Kamer, G., Luo, M., Mosser, A.G., Rueckert, R.R., Sherry, B. and Vriend, G., 1985, Structure of a human common cold virus and functional relationship to other picorna viruses, Nature 317:145ADSCrossRefGoogle Scholar
  39. Rossmann, M.G. and Blow, D.M., 1962, The Detection of Sub-Units Within the Crystallographic Asymmetric Unit, Acta Cryst. 15:2.CrossRefGoogle Scholar
  40. Rossmann, M.G. and Blow, D.M., 1963, Determination of Phases by the conditions of Non-Crystallographic Symmetry, Acta Cryst. 16:39.CrossRefGoogle Scholar
  41. Steigemann, W., 1974, Dissertation: “Die Entwicklung und Anwendung von Rechenverfahren und Rechenprogrammen zur Strukturanalyse von Proteinen,” Technische Universität München, West Germany.Google Scholar
  42. Wang, B.C., 1985, Resolution of Phase Ambiguity in Macromolecular Crystallography, in: “Methods in Enzymology,” Wyckoff, Timasheff & Hirs, eds., 115:90.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Rudolf Ladenstein
    • 1
  • Adelbert Bacher
    • 2
  1. 1.Max-Planck-Institut für BiochemieMartinsriedGermany
  2. 2.Institut für Organische Chemie und BiochemieTechnischen Universität MünchenGarchingWest Germany

Personalised recommendations