Molecular Dynamics: Applications to Proteins

  • Martin Karplus
Part of the NATO ASI Series book series (NSSA, volume 183)


Molecular dynamics of macromolecules of biological interest began in 1977 with the publication of a paper on the simulation of a small protein, the bovine pancreatic trypsin inhibitor (McCammon et al., 1977). Although the trypsin inhibitor is rather uninteresting from a dynamical viewpoint (its function is to bind to trypsin) experimental and theoretical studies of this model system — the “hydrogen atom” of protein dynamics — served to initiate explorations in this field.


Molecular Dynamic Molecular Dynamic Simulation Atomic Motion Nuclear Overhauser Effect Nuclear Magnetic Resonance Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agmon, M. and Hopfield, J.J., 1983, CO binding to heme proteins: A model for barrier height distributions and slow conformational changes, J. Chem. Phys. 79:2042.ADSCrossRefGoogle Scholar
  2. Ansari, A., Berendzen, J., Bowne, S.F., Frauenfelder, H., Iben, I.E.T., Sauke, T.B., Shyamsunder, E. and Young, R.D., 1985, Protein states and proteinquakes, Proc. Natl. Acad. Sci. USA 82:5000.ADSCrossRefGoogle Scholar
  3. Artymiuk, P.J., Blake, C.C.F., Grace, D.E.P., Oatley, S.J., Phillips, D.C. and Sternberg, M.J.E., 1979, Crystallographic studies of the dynamic properties of lysozyme, Nature 280:563.ADSCrossRefGoogle Scholar
  4. Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H. and Gunsalus, I.C., 1975, Dynamics of ligand binding to myoglobin, Biochemistry 14:5355.CrossRefGoogle Scholar
  5. Bashford, D., Weaver, D.L. and Karplus, M., 1984, Diffusion-collision model for the folding kinetics of λ-repressor operator-binding domain, J. Biomol. Struct. Dyns. 1:1243.CrossRefGoogle Scholar
  6. Bialek, W. and Goldstein, R.F., 1985, Do vibrational spectroscopies uniquely describe protein dynamics? The case for myoglobin, Biophys. J. 8:1027.CrossRefGoogle Scholar
  7. Blake, C.C.F., Pulford, W.C.A. and Artymiuk, P.J., 1983, X-ray studies of water in crystals of lysozyme, J. Mol. Biol. 167:693.CrossRefGoogle Scholar
  8. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., 1983, CHARMM: a program for macromolecular energy, minimization, and dynamics calculations, J. Comp. Chem. 4:187.CrossRefGoogle Scholar
  9. Brooks, B.R. and Karplus, M., 1983, Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor, Proc. Natl. Acad. Sci. USA 80:6571.ADSCrossRefGoogle Scholar
  10. Brooks III. C. L. Briinger, A. T. and Karplus, M., 1985, Active site dynamics in protein molecules: a stochastic boundary molecular-dynamics approach, Biopolymers 24:843.CrossRefGoogle Scholar
  11. Brooks III. C.L., Karplus, M. and Pettitt, B.M., 1988, Proteins: a theoretical perspective of dynamics, structure and thermodynamics, Adv. Chem. Phys. LXXI, John Wiley & Sons, New York.Google Scholar
  12. Brünger, A.T., 1989, A memory-efficient fast Fourier transformation algorithm for crystallographic refinement on supercomputers, Acta Cryst. A45:42.Google Scholar
  13. Brünger, A.T., Brooks III C.L. and Karplus, M., 1984, Stochastic boundary conditions for molecular dynamics simulations of ST2 water, Chem. Phys. Letters 105:495.ADSCrossRefGoogle Scholar
  14. Brünger, A.T., Brooks III C.L. and Karplus, M., 1985, Active site dynamics of ribonuclease, Proc. Natl. Acad. Sci. USA 82:8458.ADSCrossRefGoogle Scholar
  15. Brünger, A.T., Campbell, R.L., Clore, G.M., Gronenborn, A.M., Karplus, M., Petsko, G.A. and Teeter, M.M., 1987a, Solution of a protein crystal structure with a model obtained from NMR interproton distance restraints, Science 235:1049.ADSCrossRefGoogle Scholar
  16. Brünger, A.T., Clore, G.M., Gronenborn, A.M. and Karplus, M., 1986, Three-dimensional structure of proteins determined by molecular dynamics with interproton distance restraints: application to crambin, Proc. Natl. Acad. Sci. USA 83:3801.ADSCrossRefGoogle Scholar
  17. Brünger, A.T., Karplus, M., and Petsko, G.A., 1989, Crystallographic refinement by simulated annealing: application to crambin, Acta Cryst. BA45:50.Google Scholar
  18. Brünger, A.T., Kuriyan, J. and Karplus, M., 1987b, Crystallographic R factor refinement by molecular dynamics, Science 235:458.ADSCrossRefGoogle Scholar
  19. Bunn, H.F. and Forget, B.G., 1980, “Hemoglobin: molecular, genetic clinical aspects,” Saunders, New York.Google Scholar
  20. Campbell, I.D., Dobson, C.M., Moore, G.R., Perkins, S.J. and Williams, R.J.P., 1976, Temperature dependent molecular motion of a tyrosine residue of ferrocytochrome c, FEBS Lett. 70:96.CrossRefGoogle Scholar
  21. Campbell, I.D., Dobson, C.M. and Williams, R.J.P., 1978, Structures and energetics of proteins and their active sites, Adv. Chem. Phys. 39:55.CrossRefGoogle Scholar
  22. Chandrasekhar, S., 1943, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15:1.MathSciNetADSMATHCrossRefGoogle Scholar
  23. Chothia, C and Lesk, A.M., 1985, Helix movements in proteins, TIBS 10:116.Google Scholar
  24. Clore, G.M. and Gronenborn, A.M., 1989, Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy, CRC Crit. Rev. Biochem., in press.Google Scholar
  25. Clore, G.M., Gronenborn, A.M., Brünger, A.T. and Karplus, M., 1985, Solution conformation of a heptadecapeptide comprising the DNA binding helix F of the cyclic AMP receptor protein of Escherichia coli: combined use of 1H nuclear magnetic resonance and restrained molecular dynamics, J. Mol. Biol. 186:435.CrossRefGoogle Scholar
  26. Debrunner, P.G. and Frauenfelder, H., 1982, Dynamics of proteins, Ann. Rev. Phys. Chem. 33:283.ADSCrossRefGoogle Scholar
  27. Desmeules, P.J. and Allen, L.C., 1980, Strong, positive-ion hydrogen bonds: the binary complexes formed from NH3, OH2, FH, PH3, SH2, and ClH, J. Chem. Phys. 72:4731.ADSCrossRefGoogle Scholar
  28. Dickerson, R.E. and Geis, I., 1983, “Hemoglobin: structure, function, evolution, and pathology,” Benjamin/Cummings, Menlo Park.Google Scholar
  29. Dobson, C.M. and Karplus, M., 1986, Internal motion of proteins: nuclear magnetic resonance measurements and dynamic simulations, in “Methods in Enzymology,” 131, C.H.W. Hirs and S.N. Timasheff, eds., Academic Press, Inc., New York.Google Scholar
  30. Doster, W., Cusack, S. and Petry, W., 1989, Dynamical transition of myoglobin revealed by inelastic neutron scattering, Nature 337:734.ADSCrossRefGoogle Scholar
  31. Elber, R. and Karplus, M., 1987, Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin, Science 235:318.ADSCrossRefGoogle Scholar
  32. Fermi, G. and Perutz, M.F., 1981, “Haemoglobin and myoglobin,” Atlas of Molecular Structures in Biology: 2, Clarendon, Oxford.Google Scholar
  33. Fersht, A.R., 1987, The hydrogen bond in molecular recognition, Trends Biochem. Sci. 12:301.CrossRefGoogle Scholar
  34. Fleischman, S.H., Tidor, B., Brooks III, C.L. and Karplus, M., Free energy simulation methodology, J. Comp. Chem., to be published.Google Scholar
  35. Frauenfelder, H., Petsko, G.A. and Tsernoglou, D., 1979, Temperature-dependent x-ray diffraction as a probe of protein structural dynamics, Nature 280:558.ADSCrossRefGoogle Scholar
  36. Gao, J., Kuczera, K., Tidor, B. and Karplus, M., 1989, Hidden thermodynamic analysis mutant proteins: A molecular dynamics analysis, Science 244:1069.ADSCrossRefGoogle Scholar
  37. Gelin, B.R., Lee, A.W.-M. and Karplus, M., 1983, Hemoglobin tertiary structural change on ligand binding: its role in the co-operative mechanism, J. Mol. Biol. 171:489.CrossRefGoogle Scholar
  38. Glover, I., Haneef, I., Pitts, J., Wood, S., Moss, D., Tickle, I. and Blundell, T., 1983, Conformational flexibility in a small globular hormone: x-ray analysis of avian pancreatic polypeptide at 0.98-Å resolution, Biopolymers 22:293.CrossRefGoogle Scholar
  39. Gurd, F.R.N. and Rothgeb, J.M., 1979, Motions in proteins, Adv. Prot. Chem. 33:73.CrossRefGoogle Scholar
  40. Hansen, J.P. and McDonald, I.R., 1976, “Theory of Simple Liquids,” Academic Press, New York.Google Scholar
  41. Hartmann, H., Parak, F., Steigemann, W., Petsko, G.A., Ringe Ponzi, D. and Frauenfelder, H., 1982, Conformational substates in a protein: structure and dynamics of metmyoglobin at 80°K, Proc. Natl. Acad. Sci. USA 79:4967.ADSCrossRefGoogle Scholar
  42. Hendrickson, W.A. and Teeter, M.M., 1981, Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur, Nature 290:107.ADSCrossRefGoogle Scholar
  43. Honig, B., Hudson, B., Sykes, B.D. and Karplus, M., 1971, Ring orientation in ß-ionone and retináis, Proc. Natl Acad. Sci. USA 68:1289.ADSCrossRefGoogle Scholar
  44. Ichiye, T., Olafson, B.D., Swaminathan, S. and Karplus, M., 1986, Structure and internal mobility of proteins: a molecular dynamics study of hen egg white lysozyme, Biopolymers 25:1909.CrossRefGoogle Scholar
  45. Jack, A. and Levitt, M., 1978, Refinement of large structures by simultaneous minimization of energy and R factor, Acta Cryst. A34:931.Google Scholar
  46. James, M.N.G. and Sielecki, A.R., 1983, Structure and refinement of penicillopepsin at 1.8 Å resolution, J. Mol. Biol. 163:299.CrossRefGoogle Scholar
  47. Karplus, M. and Kushick, J.N., 1981, Method for estimating the configurational entropy of macromolecules, Macromolecules 14:325.ADSCrossRefGoogle Scholar
  48. Karplus, M. and McCammon, J.A., 1981, The internal dynamics of globular proteins, CRC Crit. Rev. Biochem. 9:293.CrossRefGoogle Scholar
  49. Karplus, M. and McCammon, J.A., 1983, Dynamics of proteins: elements and function, Ann. Rev. Biochem. 53:263.CrossRefGoogle Scholar
  50. Kebarle, P., 1977, Ion thermochemistry and solvation from gas phase ion equilibria, Ann. Rev. Phys. Chem. 28:445.ADSCrossRefGoogle Scholar
  51. Kirkpatrick, S., Gelatt, Jr., C.D. and Vecchi, M.P., 1983, Optimization by simulated annealing, Science 220:671.MathSciNetADSMATHCrossRefGoogle Scholar
  52. Kirkwood, J.G. and Boggs, E.M., 1942, The radial distribution function in liquids, J. Chem. Phys. 10:394.ADSCrossRefGoogle Scholar
  53. Kirkwood, J.G., 1935, Statistical mechanics of fluid mixtures, J. Chem. Phys. 3:300.ADSCrossRefGoogle Scholar
  54. Konnert, J.H. and Hendrickson, W.A., 1980, A restrained-parameter thermal-factor refinement procedure, Acta Cryst. A36:344.Google Scholar
  55. Kuriyan, J., Karplus, M. and Petsko, G.A., 1987, Estimation of uncertainties in x-ray refinement results by use of perturbed structures, Proteins 2:1.CrossRefGoogle Scholar
  56. Kuriyan, J., Petsko, G.A., Levy, R.M. and Karplus, M., 1986, Effect of anisotropy and anharmonicity on protein crystallographic refinement: an evaluation by molecular dynamics, J. Mol. Biol. 190:227.CrossRefGoogle Scholar
  57. Lesk, A.M. and Chothia, C., 1980, How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins, J. Mol. Biol. 136:225.CrossRefGoogle Scholar
  58. Levitt, M., Sander, C. and Stern, P.S., 1985, Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme, J. Mol. Biol. 181:423.CrossRefGoogle Scholar
  59. Levy, R.M. and Karplus, M., 1979, Vibrational approach to the dynamics of an a-helix, Biopolymers 18:2465.CrossRefGoogle Scholar
  60. Levy, R.M., Karplus, M. and Wolynes, P.G., 1981, NMR relaxation parameters in molecules with internal motion: exact Langevin trajectory results compared with simplified relaxation models, J. Am. Chem. Soc. 103:5998.CrossRefGoogle Scholar
  61. Levy, R.M., Perahia, D. and Karplus, M., 1982, Molecular dynamics of an a-helical polypeptide: temperature dependence and deviation from harmonic behavior, Proc. Natl. Acad. Sci. USA 79:1346.ADSCrossRefGoogle Scholar
  62. Levy, R.M., Sheridan, R.P., Keepers, J.W., Dubey, G.S., Swaminathan, S. and Karplus, M., 1985, Molecular dynamics of myoglobin at 298° K: results from a 300 ps computer simulation, Biophys. J. 48:509.CrossRefGoogle Scholar
  63. Marfey, P.S., Uziel, M. and Little, J., 1965, Reaction of bovine pancreatic ribonuclease A with l,5-difluoro-2,4-dinitrobenzene, J. Biol. Chem. 240:3270.Google Scholar
  64. Marquait, M., Deisenhofer, D., Huber, R. and Palm, W., 1980, Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0Å and 1.9Å resolution, J. Mol Biol 141:369.CrossRefGoogle Scholar
  65. Matthew, J.B. and Richards, F.M., 1982, Anion binding and pH-dependent electrostatic effects in ribonuclease, Biochemistry 21:4989.CrossRefGoogle Scholar
  66. McCammon, J.A., Gelin, B.R. and Karplus, M., 1977, Dynamics of folded proteins, Nature 267:585.ADSCrossRefGoogle Scholar
  67. McCammon, J.A., Wolynes, P.G. and Karplus, M., 1979, Picosecond dynamics of tyrosine side chains in proteins, Biochemistry 18:927.CrossRefGoogle Scholar
  68. McQuarrie, D.A., 1976, “Statistical Mechanics,” Harper & Row, New York.Google Scholar
  69. Morimoto, H., Lehmann, H. and Perutz, M.F., 1971, Molecular pathology of human haemoglobin: stereochemical interpretation of abnormal oxygen affinities, Nature 232:408.ADSCrossRefGoogle Scholar
  70. Moss, D.S. and Morffew, A.J., 1982, Restrain: a restrained least squares refinement program for use in protein crystallography, Comput. & Chem. 6:1.CrossRefGoogle Scholar
  71. Navia, M.A., Fitzgerald, P.M.D., McKeever, B.M., Leu, C.-T., Heimbach, J.C., Herber, W.K., Sigal, I.S., Darke, P.L. and Springer, J.P., 1989, Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1, Nature 337:615.ADSCrossRefGoogle Scholar
  72. Noggle, J.H. and Schirmer, R.E., 1971, “The Nuclear Overhauser Effect,” Academic Press, New York.Google Scholar
  73. Northrup, S.H., Pear, M.R., Lee, C.-Y., McCammon, J.A. and Karplus, M., 1982, Dynamical theory of activated processes in globular proteins, Proc. Natl Acad. Sci. USA 79:4035.ADSCrossRefGoogle Scholar
  74. Olejniczak, E.T., Dobson, C.M., Levy, R.M. and Karplus, M., 1984, Motional averaging of proton nuclear Overhauser effects in proteins. Predictions from a molecular dynamics simulation of lysozyme, J. Am. Chem. Soc. 106:1923.CrossRefGoogle Scholar
  75. Olejniczak, E.T., Poulsen, F.M. and Dobson, C.M., 1981, Proton nuclear Overhauser effects and protein dynamics, J. Am. Chem. Soc. 103:6574.CrossRefGoogle Scholar
  76. Parak, F., Knapp, E.W. and Kucheida, D., 1982, Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals, J. Mol Biol 161:177.CrossRefGoogle Scholar
  77. Pauling, L., Corey, R.B. and Branson, H.R., 1951, The structure of proteins: two hydrogen- bonded helical configurations of the polypeptide chain, Proc. Natl Acad. Sci. USA 37:205.ADSCrossRefGoogle Scholar
  78. Perutz, M.F., 1970, Haem-Haem interaction and the problem of allostery, Nature 228:726.ADSCrossRefGoogle Scholar
  79. Petsko, G.A. and Ringe, D., 1984, Fluctuations in protein structure from x-ray diffraction, Ann. Rev. Biophys. Bioeng. 13:331.CrossRefGoogle Scholar
  80. Pettigrew, D.W., Romeo, P.H., Tsapis, A., Thillet, J., Smith, M.L., Turner, B.W. and Ackers, G.K., 1982, Probing the energetics of proteins through structural perturbation: sites of regulatory energy in human hemoglobin, Proc. Natl Acad. Sci. USA 79:1849.ADSCrossRefGoogle Scholar
  81. Phillips, D.C., 1981, Closing Remarks, in “Biomolecular Stereodynamics,” R.H. Sarma, ed., Adenine, New York.Google Scholar
  82. Poulsen, F.M., Hoch, J.C. and Dobson, C.M., 1980, A structural study of the hydrophobic box region of lysozyme in solution using nuclear Overhauser effects, Biochemistry 19:2597.CrossRefGoogle Scholar
  83. Ramachandran, G.N., Ramakrishnan, C and Sasisekharan, V., 1963, Stereochemistry of polypeptide chain configurations, J. Mol Biol 7:95.CrossRefGoogle Scholar
  84. Shih, H.H.-L., Brady, J. and Karplus, M., 1985, Proc. Natl Acad. Sci. USA 82:1697.ADSCrossRefGoogle Scholar
  85. Smith, J.L., Hendrickson, W.A., Honzatko, R.B. and Sheriff, S., 1986, Structural heterogeneity in protein crystals, Biochemistry 25:5018.CrossRefGoogle Scholar
  86. Solomon, I., 1955, Relaxation processes in a system of two-spins, Phys. Rev. 99:559.ADSCrossRefGoogle Scholar
  87. Stein, D.L., 1985, A model of protein conformational substates, Proc. Natl Acad. Sci. USA 82:3670.ADSCrossRefGoogle Scholar
  88. Stillinger, F.H. and Rahman, A., 1974, Improved simulation of liquid water by molecular dynamics, J. Chem. Phys. 60:1545.ADSCrossRefGoogle Scholar
  89. Stillinger, F.H. and Weber, T.A., 1982, Hidden structure in liquids, Phys. Rev. A25:978.ADSGoogle Scholar
  90. Stillinger, F.H. and Weber, T.A., 1984, Packing structures and transitions in liquids and solids, Science 225:983.ADSCrossRefGoogle Scholar
  91. Sussman, J.L., Holbrook, S.R., Church, G.M., Kim, S.-H., 1977, A structure-factor least-squares refinement procedure for macromolecular structures using constrained and restrained parameters, Acta Cryst. A33:800.Google Scholar
  92. Swaminathan, S., Ichiye, T., van Gunsteren, W.F. and Karplus, M., 1982, Time dependence of atomic fluctuations in proteins: analysis of local and collective motions in bovine pancreatic trypsin inhibitor, Biochemistry 21:5230.CrossRefGoogle Scholar
  93. Toulouse, G., 1984, Progrés récent dans la physique des systèmes désordonnés, Helv. Phys. Acta 57:459.Google Scholar
  94. van Gunsteren, W.F. and Berendsen, M.J.C., 1977, Algorithms for macromolecular dynamics and constraint dynamics, Mol. Phys. 34:1311.ADSCrossRefGoogle Scholar
  95. van Gunsteren, W.F. and Karplus, M., 1982, Effect of constraints on the dynamics of macromolecules, Macromolecules 15:1528.ADSCrossRefGoogle Scholar
  96. Verlet, L., 1967, Computer “experiments” on classical fluids, I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159:98.ADSCrossRefGoogle Scholar
  97. Wagner, G. and Wüthrich, K., 1982, Amide proton exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution, J. Mol. Biol. 160:343.CrossRefGoogle Scholar
  98. Weatherall, D.J., Clegg, J.B., Callender, S.T., Wells, R.M.G., Gale, R.E., Huehns, E.R., Perutz, M.F., Viggiano, G. and Ho, C., 1977, Haemoglobin Radcliffe (α2ß2 99 (G1)Ala): a high oxygen-affinity variant causing familial polycythaemia, British J. Haemotology 35:177.CrossRefGoogle Scholar
  99. Weber, P.C., Salemme, F.R., Lin, S.H., Konishi, Y. and Scheraga, H.A., 1985, Preliminary crystallographic data for cross-linked (lysine7-lysine41)-ribonuclease A, J. Mol. Biol. 181:453.CrossRefGoogle Scholar
  100. Wlodawer, A., 1985, Structure of bovine pancreatic ribonuclease by x-ray and neutron diffraction, in “Biological Macromolecules and Assemblies: Vol. 2, Nucleic Acids and Interactive Proteins,” F.A. Jurnak and A. McPherson, eds., Wiley, New York.Google Scholar
  101. Wüthrich, K., 1989, The development of nuclear magnetic resonance spectroscopy as a technique for protein structure determination, Ace. Chem. Res. 22:36.CrossRefGoogle Scholar
  102. Wyckoff, H.W., Hirs, C.H.W. and Timasheff, S.N., eds., 1985, “Diffraction Methods for Biological Macromolecules,” Part B, Methods Enzymology 115.Google Scholar
  103. Yu, H.-A., Karplus, M. and Hendrickson, W.A., 1985, Restraints in temperature-factor refinement for macromolecules: an evaluation by molecular dynamics, Acta Cryst. B41:191.Google Scholar
  104. Ziman, J.M., 1979, “Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems,” Cambridge University Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Martin Karplus
    • 1
  1. 1.Department of ChemistryHarvard UniversityCambridgeUSA

Personalised recommendations