Spectroscopy of Molecular Structure and Dynamics

  • Rudolf Rigler
Part of the NATO ASI Series book series (NSSA, volume 183)


Dynamic aspects of molecular structure at atomic resolution have become of increasing importance as experimental and theoretical methods have been improving for the analysis of molecular motions (Frauenfelder et al., 1979; Artemiuk et al, 1979; Karplus and McCammon, 1983). Simulating the motion of individual atoms from the knowledge of their position and interatomic forces (McCammon and Harvey, 1987; Brooks et al., 1988) has opened the way to predict molecular behavior and functional aspects of molecular assemblies such as complex enzymes and nucleic acids. An important part of this approach are techniques which can provide experimental data on structural variation and motions in a time range which is accessible to molecular dynamics simulation (10-12–10-9s).


Molecular Dynamic Simulation Fluorescence Anisotropy Fluorescence Correlation Spectroscopy Bovine Pancreatic Trypsin Inhibitor Resonant Energy Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlström, P., Teleman, O., Kordel, J., Forsén, S. and Jönsson, B., 1989, A molecular dynamics simulation of Bovine Calbindin D9k, Biochemistry 28:3205.CrossRefGoogle Scholar
  2. Amir, D. and Haas, E., 1987, Estimation of Intramolecular distance distribution in Bovine Pancreatic Trypsin Inhibitor by site-specific labeling and nonradiative excitation energy-transfer measurements, Biochemistry 26:2162.CrossRefGoogle Scholar
  3. Artemiuk, P.J., Blake, C.C.F., Grace, D.E.P., Oatley, S.J., Phillips, D.C. and Sternberg, M.J.E., 1979, Chrstallographic studies of the dynamic properties of lysozyme, Nature 280:563.ADSCrossRefGoogle Scholar
  4. Brooks, Ch.L., Karplus, M. and Montgomery Pettitt, B., 1988, “Proteins,” John Wiley & Sons, [n.p.].Google Scholar
  5. Careri, G. and Wyman, J., 1984, Soliton-assisted unidirectional circulation in a biochemical cycle, Proc. Natl Acad. Sci USA 81:4386.ADSCrossRefGoogle Scholar
  6. Claesens, F. and Rigler, R., 1986, Conformational dynamics of the anticodon loop in yeast tRNAPhe as sensed by the fluorescence of wybutine, Eur. Biophys. J. 13:831.CrossRefGoogle Scholar
  7. Ehrenberg, M. and Rigler, R., 1972, Polarized fluorescence and rotational Brownian motion, Chem. Phys. Lett. 14:539.ADSCrossRefGoogle Scholar
  8. Ehrenberg, M. and Rigler, R., 1974, Rotational Brownian motion and fluorescence intensity fluctuations, Chem. Phys; 4:390.ADSCrossRefGoogle Scholar
  9. Förster, Th.Z., 1948, Zwischenmolekulare Energiewanderung und Fluoreszenz, Annalen der Physik 2:437.Google Scholar
  10. Frauenfelder, H., Petsko, G.A. and Tsernoglou, D., 1979, Temperature-dependent X-ray diffraction as a probe of protein structural dynamics, Nature 280:558.ADSCrossRefGoogle Scholar
  11. Gratton, E., Alcalá, J.R., Mariott, G. and Prendergast, F.J., 1987, Fluorescence lifetime distributions of single tryptophan proteins: a protein dynamics approach, in “Structure, Dynamics and Function of Biomolecules,” Springer Series in Biophysics, A. Ehrenberg, R. Rigler, A. Gräslund and L. Nilsson, eds., Springer Verlag, [n.p.], 132.CrossRefGoogle Scholar
  12. Ichiye, T. and Karplus, M., 1983, Fluorescence depolarization of tryptophan residues in proteins: a molecular dynamics study, Biochemistry 22:2884.CrossRefGoogle Scholar
  13. Karplus, M. and McCammon, J.A., 1983, Dynamics of proteins: elements and function, Ann. Rev. Biochem. 52:263.CrossRefGoogle Scholar
  14. Kask, P., Piksarv, P., Pooga, M., Mets, U. and Lippmaa, E., 1989, Separation of the rotational contribution in fluorescence correlation experiments, Biophys. J. 55:213.CrossRefGoogle Scholar
  15. Lipari, G. and Szabo, A., 1982, Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. 2. Analysis of experimental results, J. Am. Chem. Soc. 104:4546.CrossRefGoogle Scholar
  16. MacKerell, A.D., Jr., Nilsson, L., Rigler, R. and Saenger, W., 1988, Molecular dynamics simulations of ribonuclease Tl: analysis of the effect of solvent on the structure, fluctuations, and active site of the free enzyme, Biochemistry 27:4547.CrossRefGoogle Scholar
  17. MacKerell, A.D., Jr., Nilsson, L., Rigler, R., Heinemann, U. and Saenger, W., 1989, Molecular dynamics simulations of Ribonuclease Tl: comparison of the free enzyme and the 2’GMP-enzyme conples, Proteins. Structure, Function and Genetics, in press.Google Scholar
  18. MacKerell, A.D., Jr., Rigler, R., Nilsson, L., Hahn, U. and Saenger, W., 1987, Protein dynamics. A time-resolved fluorescence, energetic and molecular dynamics study of ribonuclease Tl, Biophys. Chem. 26:247.CrossRefGoogle Scholar
  19. McCammon, J.A. and Harvey, S.C., 1987, “Dynamics of Proteins and Nucleic Acids,” Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  20. Merola, F., Rigler, R., Holmgren, A. and Brochon, J.Cl., 1989, Picosecond tryptophan fluorescence of Thioredoxin: evidence of discrete species in slow exchange, Biochemistry 28:3383.CrossRefGoogle Scholar
  21. Nordlund, T.M., Andersson, S., Nilsson, L., Rigler, R., Gräslund, G. and McLaughlin, L.W., 1989, Structure and dynamics of a fluorescent DNA oligomer containing the Eco RI recognition sequence: fluorescence, molecular dynamics, and NMR studies, Biochemistry, in press.Google Scholar
  22. Petrich, J.W., Chang, D.B., McDonald, D.B. and Fleming, G.R., 1983, On the origin of nonexponential fluorescence decay in tryptophan and its derivatives, J. Am. Chem. Soc. 105:3824.CrossRefGoogle Scholar
  23. Rigler, R. and Claesens, F., 1986, Picosecond time domain spectroscopy of structure and dynamics in nucleic acids, in “Structure and Dynamics of RNA,” P.H. Knippenberg and C.W. Hilbers, eds., Plenum Press, [n.p.], 45.CrossRefGoogle Scholar
  24. Rigler, R. and Ehrenberg, M., 1976, Fluorescence relaxation spectroscopy in the analysis of macromolecular structure and motion, Quart. Rev. Biophys. 13:831.Google Scholar
  25. Rigler, R., Claesens, F. and Lomakka, G., 1984, Picosecond single photon fluorescence spectroscopy of nucleic acisds, in “Ultrafast Phenomena IV,” D.H. Auston and K.B. Eisenthal, eds., Springer Verlag, [n.p.], 472.CrossRefGoogle Scholar
  26. Rigler, R., Grasselli, P. and Ehrenberg, M., 1979, Fluorescence correlation spectroscopy and application to the study of Brownian motion of biopolymers, Physica Scripta 19:486.ADSCrossRefGoogle Scholar
  27. Rigler, R., Kristensen, O., Roslund, J., Thyberg, P., Oba, K. and Eriksson, M., 1987, Molecular structures and dynamics: beamline for time resolved spectroscopy at the MAX synchrotron in Lund, Physica Scripta Tl7:204.ADSCrossRefGoogle Scholar
  28. Rigler, R., Roslund, J. and Forsén, S., 1989, Side chain mobility in Bovine Calbindin D9k: rotational motion of Tyr 13, Eur. Biochem. J., submitted.Google Scholar
  29. Ross, J.B.A., Laus, W.R., Buker, A., Sutherland, J.C. and Wyssbrod, H.R., 1986, Time-resolved fluorescnece and 1H NMR studies of tyrosyl residues in Oxytocin and small peptides: correlation of NMR-determined conformation of tyrosyl residues and fluorescence decay kinetics, Biochemistry 25:607.CrossRefGoogle Scholar
  30. Szebenyi, D.M.E. and Moffat, J., 1986, The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine, J. Biol. Chem. 261:8761.Google Scholar
  31. Tamai, N., Yamazaki, T. and Yamazaki, I., 1985, Diffusion effect on excitation energy transfer in solution: analysis by means of picosecond time-resolved fluorimeter, Chem. Phys. Lett. 120:24.ADSCrossRefGoogle Scholar
  32. Vogel, G., Nilsson, L., Rigler, R., Voges, K.P. and Jung, G., 1988, Structural fluctuations of a helical polypeptide traversing a lipid bilayer, Proc. Natl. Acad. Sci. USA 85:5067.ADSCrossRefGoogle Scholar
  33. Wennerberg, A.B.A., Cooke, R.M., Carlquist, M., Rigler, R., and Campbell, I.D., 1989, A 1H-NMR study of the solution conformation of the neuropeptide Galanin, FEB S Letts., submitted.Google Scholar
  34. Zinth, W., Dobler, J. and Kaiser, W., 1986, Femtosecond spectroscopy of the primary events of bacterial photosynthesis, in “Ultrafast Phenomena V,” G.R. Fleming and R.F. Siegman, eds., Springer Verlag, [n.p.], 379.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Rudolf Rigler
    • 1
  1. 1.Department of Medical BiophysicsKarolinska InstitutetStockholmSweden

Personalised recommendations