Histone H1 Solution Structure and the Sealing of Mammalian Nucleosome

  • Claudio Nicolini
  • Paolo Catasti
  • Mario Nizzari
  • Enrico Carrara
Part of the NATO ASI Series book series (NSSA, volume 183)


The lysine-rich chromosomal protein histone H1 has been shown to be critically related to the control of the tertiary (nucleosome) and quaternary (solenoid or rope-like) structure of mammalian chromosomes (Nicolini, 1983; Dolby et al., 1981; Bradbury and Baldwin, 1986; Nicolini, 1986).


Circular Dichroism Histone Core NOESY Spectrum Circular Dichroism Measurement Globular Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbero, J.L., Franco, L., Montero, F., and Moran, F., 1980, Structural studies on Histone H1, Circular Dichroism and Difference Spectroscopy of the Histones H1 and their trypsin-resistant cores from calf thymus and from the fruit fly Ceratilis Capitata, Biochemistry 19:4080.CrossRefGoogle Scholar
  2. Bradbury, E.M. and Baldwin, J.P., 1986, Neutron scatter and diffraction techniques applied to nucleosome and chromatin structure, in: “Nobel Symposium on Biosciences at the Physical Science Frontiers”, Nicolini, C. ed. Humana Press, Clifton N.J., pp. 35–66.CrossRefGoogle Scholar
  3. Catasti, P., Carrara, E. and Nicolini, C., 1989, PEPTO: an expert system for automatic peak assignment of two-dimensional nuclear magnetic resonance spectra of proteins, J. Comp. Chem., in press.Google Scholar
  4. Chang, C.T., Wu, C.-S.C., & Yang, J.T., 1978, Circular Dichroism analysis of protein conformation: inclusion of the beta-turns, Anal. Biochem. 91:12.CrossRefGoogle Scholar
  5. Chapman, G.E., Hartman, P.G. and Bradbury, E.M., 1975, Studies and the roles and mode of operation in the very-lysine-rich Histone H1 in eukaryote chromatin. The isolation of the globular and non-globular regions of the Histone H1 molecule, Eur J.Bióchem. 61:69.CrossRefGoogle Scholar
  6. Chen, Y.-H., Yang, J.T. & Chau, K.H., 1974, Determination of the helix and beta-form of proteins in acqueous solution by Circular Dichroism, Biochemistry 13:3350.CrossRefGoogle Scholar
  7. Dolby, T., Belmont, A., Borun, T. and Nicolini, C., 1981, DNA replication, chromatin structures, and histone phosphorylation altered by theophylline in synchronized HeLa S3 cells, J. Cell Biol. 89:78.CrossRefGoogle Scholar
  8. Hartman, P., Chapman, G., Moss, T., and Bradbury, E.M., 1977, Studies on the roles and mode of operation in the very-lysine-rich Histone H1 in eukaryote chromatin. The three structural regions of the Histone H1 molecule, Eur. J. Biochem. 71:45.CrossRefGoogle Scholar
  9. Hogan, M.E. and Jardetzky, O., 1980, Effect of ethidium bromide on deoxyribonucleic acid internal motion , Biochemistry 19:2079.CrossRefGoogle Scholar
  10. Jeener, J., Meier, B.H., Bachmann, P. and Ernst, R. R., 1979, Investigation of exchange process by two-dimensional NMR spectroscopy, J. Chem. Phys. 71:4546.ADSCrossRefGoogle Scholar
  11. Marion D. and Wüthrich, K., 1983, Application of phase sensitive two-dimensional Correlated Spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins, Biochem Biophys. Res. Comm. 113:967.CrossRefGoogle Scholar
  12. Nicolini, C., 1983, Chromatin structure from nuclei to genes, Anticancer Research 3:63.Google Scholar
  13. Nicolini, C., 1986, “Biophysics and Cancer,” Plenum Press, NY, 1–462.Google Scholar
  14. Nicolini, C., Catasti P., Nizzari, M., Carrara E. and Szilágyi, L., 1989, H1 histone core solution structure by 2DFT NMR at high resolution, submitted to Biophys. J. Google Scholar
  15. Nicolini, E.M., Szilágyi, L. and Yau, P., 1989, Effect of selective removal of chromosomal proteins on the DNA internal motion within nucleosomes: role of H1 histone, submitted to Eur. J. Biophys. Google Scholar
  16. Pepe, M., Rauch, G., Catasti, P., Nizzari, M. and Nicolini, C., 1989, Histone H1 characterization by Differential Scanning Calorimetry, Circular Dichroism, 1DFT NMR and statistical algorithms, submitted for publication to Biochemistry. Google Scholar
  17. Ranee, M., Sorensen, D., Wagner, G. and Ernst, R., 1984, Inclosed spectral resolution in COSY 1H-NMR spectra of proteins via double quantum filter, Biochem. Biophys. Res. Comun. 117:479.Google Scholar
  18. Rauch, G., Catasti P., Nizzari, M., Pepe M., Panfoli, I. and Nicolini, C., 1989, A biophysical approach to the determination of the secondary structure of the histone H1 globular region, submitted to the Int. J. Macr. Biol. Google Scholar
  19. Robson, B. and Gamier, J., 1986, “Introduction to Protein and Protein Engineering,” Elsevier Science Publishers.Google Scholar
  20. Sanders, C., 1977, A method for the fractionation of the High-mobility-group Non-histone chromosomal proteins, Biochem. Biophys. Res. Comm. 78:1034.CrossRefGoogle Scholar
  21. Wüthrich K., 1986, “NMR of Proteins and Nucleic Acids,” J. Wiley and sons, New York.Google Scholar
  22. Yang, J.T., Wu, C.-S.C., & Martinez, H.M., 1986, Calculation of protein conformation from Circular Dichroism, Methods in Enzymol. 130:208.CrossRefGoogle Scholar
  23. Yau, P., Thome, A.W., Imai, B.S., Matthews, H.R. and Bradbury, E.M., 1982, Thermal denaturation studies of acetylated nucleosome and oligonucleotides, Eur. J. Biochem. 129:281.CrossRefGoogle Scholar
  24. Zarbock, J., Clore, G.M. and Gronenborn, A.M., 1986, Nuclear magnetic resonance study of the globular domain of chicken histone H5: Resonance assignment and secondary structure, Proc. Nat. Acad. Sci. USA 83:7628.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Claudio Nicolini
    • 1
  • Paolo Catasti
    • 1
  • Mario Nizzari
    • 1
  • Enrico Carrara
    • 1
  1. 1.Institute of BiophysicsUniversity of Genova School of MedicineItaly

Personalised recommendations