Methods of Stable-Isotope-Assisted Protein NMR Spectroscopy in Solution

  • Brian J. Stockman
  • John L. Markley
Part of the NATO ASI Series book series (NSSA, volume 183)


The scope of this review, which is abbreviated from Stockman and Markley (1989) will be limited to 2H-, 13C-, and 15N-assisted NMR spectroscopy of proteins in solution. Since hydrogen, carbon, and nitrogen are ubiquitous in proteins, the procedures presented here are applicable to any protein. Elegant reviews covering NMR spectroscopy of less predominant atoms in proteins have appeared recently: 19F (Ho et al., 1985), 31P (Gorenstein et al., 1989), 113Cd (Summers, 1988). Techniques utilizing stable-isotope-assisted solid state NMR spectroscopy will not be discussed here.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Amide Proton Nuclear Magnetic Resonance Study Sequential Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akasaka, K., Inoue, T., Tamura, A., Watari, H., Abe, K. and Kainosho, M.I., 1988, Internal motion of a tryptophan residue in Streptomyces subtilisn inhibitor: deuterium nuclear magnetic resonance in solution, Proteins: Structure, Function and Genetics 4:131.CrossRefGoogle Scholar
  2. Alexandrescu, A.T., Loh, S.N. and Markley, J.L., 1989, 13C NMR based chemical exchange spectroscopy: applications to enzymology and protein folding, J. Magn. Res., in press.Google Scholar
  3. Allerhand, A., 1979, Carbon-13 nuclear magnetic resonance: new techniques, Methods Enzymol. 61:458.CrossRefGoogle Scholar
  4. Allerhand, A., Doddrell, D., Glushko, V., Cochran, D.W., Wenkert, E., Lawson, P.J. and Gurd, F.R.N., 1971, Conformation and segmental motion of native and denatured ribonuclease A in solution. Application of natural-abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance, J. Am. Chem. Soc. 93:544.CrossRefGoogle Scholar
  5. Anglister, J., Bond, M.W., Frey, T., Leahy, D., Levitt, M., McConnell, H.M., Rule, G.S., Tomasello, J. and Whittaker, M., 1987, Contribution of tryptophan residues to the combining site of a monoclonal anti dinitrophenyl spin-label antibody, Biochemistry 26:6058.CrossRefGoogle Scholar
  6. Anglister, J., Frey, T. and McConnell, H.M., 1984a, Distances of tyrosine residues from a spin-label hapten in the combining site of a specific monoclonal antibody, Biochemistry 23:1138.CrossRefGoogle Scholar
  7. Anglister, J., Frey, T. and McConnell, H.M., 1984b, Magnetic resonance of a monoclonal anti-spin-label antibody, Biochemistry 23:5372.CrossRefGoogle Scholar
  8. Anglister, J., Frey, T. and McConnell, H.M., 1985, NMR technique for assessing contributions of heavy and light chains to an antibody combining site, Nature 315:65.ADSCrossRefGoogle Scholar
  9. Anglister, J., Jacob, C., Assulin, O., Ast, G., Pinker, R. and Arnon, R., 1988, NMR study of the complexes between a synthetic peptide derived from the B subunit of cholera toxin and three monoclonal antibodies against it, Biochemistry 27:717.CrossRefGoogle Scholar
  10. Anglister, J., Levy, R. and Scherf, T., 1989, Interactions of antibody aromatic residues with a peptide of cholera toxin observed by two-dimensional transferred nuclear Overhauser effect difference spectroscopy, Biochemistry 28:3360.CrossRefGoogle Scholar
  11. Anil Kumar, Ernst, R.R. and Wüthrich, K., 1980, A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules, Biochem. Biophys. Res. Comm. 95:1.CrossRefGoogle Scholar
  12. Baillargeon, M.W., Laskowski, Jr., M., Neves, D.E., Porubcan, M.A., Santini, R.E. and Markley, J.L., 1980, Soybean trypsin inhibitor (Kunitz) and its complex with trypsin. Carbon-13 nuclear magnetic resonance studies of the reactive site arginine, Biochemistry 19:5703.CrossRefGoogle Scholar
  13. Bax, A. and Drobny, G., 1985, Optimization of two-dimensional homonuclear relayed coherence transfer NMR spectroscopy, J. Magn. Res. 61:306.Google Scholar
  14. Bax, A. and Summers, M.L., 1986, 1H and 13C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR, J. Am. Chem. Soc. 108:2093.Google Scholar
  15. Bax, A. and Weiss, M.A., 1987, Simplification of two-dimensional NOE spectra of proteins by 13C labeling, J. Magn. Res. 71:571.Google Scholar
  16. Bax, A., Freeman, R. and Kempsell, S.P., 1980, Natural abundance 13C–13C coupling observed via double-quantum coherence, J. Am. Chem. Soc. 102:4849.CrossRefGoogle Scholar
  17. Bax, A., Griffey, R.H. and Hawkins, B.L., 1983, Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR, J. Magn. Res. 55:301.Google Scholar
  18. Bax, A., Kay, L.E., Sparks, S.W. and Torchia, D.A., Line narrowing of amide proton resonances in 2D NMR spectra of proteins, 1989, J. Am. Chem. Soc. 111:408.CrossRefGoogle Scholar
  19. Bax, A., Sparks, S.W. and Torchia, D.A., 1988, Long-range heteronuclear correlation: a powerful tool for the NMR analysis of medium-size proteins, J. Am. Chem. Soc. 110:7926.CrossRefGoogle Scholar
  20. Bendall, M.R., Pegg, D.T., Doddrell, D.M. and Field, J., 1981, NMR of protons coupled to 13C nuclei only, J. Am. Chem. Soc. 103:934.CrossRefGoogle Scholar
  21. Billeter, M., Braun, W. and Wüthrich, K., 1982, Sequential resonance assignments in protein *H nuclear magnetic resonance spectra, J. Mol. Biol. 155: 321.CrossRefGoogle Scholar
  22. Blomberg, F., Maurer, W. and Ruterjans, H., 1977, Nuclear magnetic resonance investigation of 15N labeled histidine in aqueous solution, J. Am. Chem. Soc. 99:8149.CrossRefGoogle Scholar
  23. Bogusky, M.J., Leighton, P., Schiksnis, R.A., Khoury, A., Lu, P. and Opella, S.J., 1989, 15N NMR spectroscopy of proteins in solution, J. Magn. Res., in press.Google Scholar
  24. Bogusky, M.J., Schiksnis, R.A., Leo, G.C. and Opella, S.J., 1987, Protein backbone dynamics by solid-state and solution 15N NMR spectroscopy, J. Magn. Res. 72:186.Google Scholar
  25. Bolton, P.H., 1985, Heteronuclear relay transfer spectroscopy with proton detection, J. Magn. Res. 62:143.Google Scholar
  26. Bovey, F.A., Tiers, G.V.D. and Filipovich, G., 1959, Polymer NMR spectroscopy. I. The motion and configuration of polymer chains in solution, J. Polymer Sci. 38:73.ADSCrossRefGoogle Scholar
  27. Bradbury, J.H. and Sheraga, H.A., 1966, Structural studies of ribonuclease. XXIV. The application of nuclear magnetic resonance spectroscopy to distinguish between the histidine residues of ribonuclease, J. Am. Chem. Soc. 88:4240.CrossRefGoogle Scholar
  28. Browne, D.T., Kenyon, G.L., Packer, E.X., Sternlicht, H. and Wilson, D.M., 1973, Studies of macromolecular structure by 13C nuclear magnetic resonance. II. A specific labeling approach to the study of histidine residues in proteins, J. Am. Chem. Soc. 95:1316.CrossRefGoogle Scholar
  29. Bruhwiler, D. and Wagner, G., 1986, Selective excitation of 1H resonances coupled to 13C. Hetero COSY and RELAY experiments with 1H detection for a protein, J. Magn. Res. 69:546.Google Scholar
  30. Bystrov, V.F., 1976, Spin-spin coupling and the conformational states of peptide systems, Prog. NMR Spect. 10:41.CrossRefGoogle Scholar
  31. Carr, H.Y. and Purcell, E.M., 1954, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev. 94:630.ADSCrossRefGoogle Scholar
  32. Chan, T.-M. and Markley, J.L., 1982, Heteronuclear (1H, 13C) two-dimensional chemical shift correlation NMR spectroscopy of a protein. Ferredoxin from Anabaena variabilis, J. Am. Chem. Soc. 104:4010.CrossRefGoogle Scholar
  33. Chan, T.-M. and Markley, J.L., 1983, Nuclear magnetic resonance studies of two-iron-two-sulphur ferredoxins. 3. Heteronuclear (13C, 1H) two-dimensional NMR spectra, 13C peak assignments, and 13C relaxation measurements, Biochemistry 22:5996.CrossRefGoogle Scholar
  34. Clore, G.M., Bax, A., Wingfield, P. and Gronenborn, A.M., 1988, Long-range 15N-1H correlation as an aid to sequential proton resonance assignment of proteins, FEBS Lett. 238:17.CrossRefGoogle Scholar
  35. Crespi, H.L., Rosenberg, R.M. and Katz, J.J., 1968, Proton magnetic resonance of proteins fully deuterated except for iH-leucine side chains, Science (Washington, D.C.) 161:795.ADSCrossRefGoogle Scholar
  36. Davis, D.G. and Bax, A., 1985, Assignment of complex 1H NMR spectra via two-dimensional homonuclear Hartmann-Hahn spectroscopy, J. Am. Chem. Soc. 107:2820.CrossRefGoogle Scholar
  37. Driscoll, P.C., Gronenborn, A.M. and Clore, G.M., 1989, The influence of sterospecific assignments on the determination of three-dimensional structures of proteins by nuclear magnetic resonance spectroscopy, FEBS Lett. 243:223.CrossRefGoogle Scholar
  38. Ernst, R.R., Bodenhausen, G. and Wokaun, A., 1987, “Principles of Nuclear Magnetic Resonance in One and Two Dimensions,” Oxford University Press.Google Scholar
  39. Feeney, J., Partington, P. and Roberts, G.C.K., 1974, The assignment of carbon-13 resonances from carbonyl groups in peptides, J. Magn. Res. 13:268.Google Scholar
  40. Fesik, S.W. and Zuiderweg, E.R.P., 1988, Heteronuclear three-dimensional NMR spectroscopy. A strategy for the simplification of homonuclear two-dimensional NMR spectra, J. Magn. Res. 78:588.Google Scholar
  41. Fesik, S.W., Gampe, R.T., Jr. and Rockway, T.W., 1987a, Application of isotope-filtered 2D NOE experiments in the conformational analysis of atrial natriuretic factor (7–23), J. Magn. Res. 74:366.Google Scholar
  42. Fesik, S.W., Gampe, R.T., Jr. and Zuiderweg, E.R.P., 1989a, Heteronuclear three-dimensional NMR spectroscopy. Natural abundance 13C chemical shift editing of 1H-1H COSY spectra, J. Am. Chem. Soc. 111:770.CrossRefGoogle Scholar
  43. Fesik, S.W., Gampe, R.T., Jr., Zuiderweg, E.R.P., Kohlbrenner, W.E. and Weigl, D., 1989b, Heteronuclear three-dimensional NMR spectroscopy applied to CMP-KDO synthetase, Biochem. Biophys. Res. Comm. 159:842.CrossRefGoogle Scholar
  44. Fesik, S.W., Luly, J.R., Erickson, J.W. and Abad-Zapatero, C., 1988, Isotope-edited proton NMR study on the structure of a pepsin/inhibitor complex, Biochemistry 27:8297.CrossRefGoogle Scholar
  45. Fesik, S.W., Luly, J.R., Stein, H.H. and BaMaung, N., 1987, Amide proton exchange rates of a bound pepsin inhibitor determined by isotope-edited proton NMR experiments, Biochem. Biophys. Res. Comm. 147:892.CrossRefGoogle Scholar
  46. Frey, T., Anglister, J. and McConnell, H.M., 1984, Nonaromatic amino acids in the combining site region of a monoclonal anti-spin-label antibody, Biochemistry 23:6470.CrossRefGoogle Scholar
  47. Frey, T., Anglister, J. and McConnell, H.M., 1988, Line-shape analysis of NMR difference spectra of an anti-spin-label antibody, Biochemistry 27:5161.CrossRefGoogle Scholar
  48. Glushka, J. and Cowburn, D., 1987, Assignment of 15N NMR signals in bovine pancreatic trypsin inhibitor, J. Am. Chem. Soc. 109:7879.CrossRefGoogle Scholar
  49. Gorenstein, D., Meadows, R.P., Metz, J.T., Nikonowicz, E. and Post, C., 1989, in “Advances in Biophysical Chemistry,” in press.Google Scholar
  50. Griesinger, C., Sorensen, O.W. and Ernst, R.R., 1987a, Novel three-dimensional NMR techniues for studies of peptides and biological macromolecules, J. Am. Chem. Soc. 109:7227.CrossRefGoogle Scholar
  51. Griesinger, C., Sorensen, O.W. and Ernst, R.R., 1987b, A practical approach to three-dimensional NMR spectroscopy, J. Magn. Res. 73:574.Google Scholar
  52. Griffey, R.H. and Redfield, A.G., 1987, Proton-detected heteronuclear edited and correlated nuclear magnetic resonance and nuclear Overhauser effect in solution, Q. Rev. Biophys. 19:51.CrossRefGoogle Scholar
  53. Griffey, R.H., Jarema, M.A., Kunz, S., Rosevear, P.R. and Redfield, A.G., 1985a, Isotopic-label-directed observation of the nuclear Overhauser effect in poorly resolved proton NMR spectra, J. Am. Chem. Soc. 107:711.CrossRefGoogle Scholar
  54. Griffey, R.H., Redfield, A.G., Loomis, R.E. and Dahlquist, F.W., 1985b, Nuclear magnetic resonance observation and dynamics of specific amide protons in T4 lysozyme, Biochemistry 24:817.CrossRefGoogle Scholar
  55. Griffey, R.H., Redfield, A.G., Mcintosh, L.P., Oas, T.G. and Dahlquist, F.W., 1986, Assignment of proton amide resonances of T4 lysozyme by 13C and 15N multiple isotopic labeling, J. Am. Chem. Soc. 108:6816.CrossRefGoogle Scholar
  56. Grissom, C.B. and Markley, J.L., 1989, Staphylococcal nuclease active-site amino acids: pH dependence of tyrosines and arginines by 13C NMR and correlation with kinetic studies, Biochemistry 28:2116.CrossRefGoogle Scholar
  57. Gronenborn, A.M., Bax, A., Wingfield, P.T. and Clore, G.M., 1989a, A powerful method of sequential proton resonance assignment in proteins using relayed 15N-1H multiple quantum coherence spectroscopy, FEBS Lett. 243:93.CrossRefGoogle Scholar
  58. Gronenborn, A.M., Wingfield, P.T. and Clore, G.M., 1989b, Determination of the secondary structure of the DNA binding protein Ner from phage μ using 1H homonuclear and 15N-1H heteronuclear NMR spectroscopy, Biochemistry, in press.Google Scholar
  59. Gust, D., Moon, R.B. and Roberts, J.D., 1975, Applications of natural-abundance nitrogen-15 nuclear magnetic resonance to biochemically important molecules, Proc. Natl. Acad. Sci. USA 72:4696.ADSCrossRefGoogle Scholar
  60. Henry, G.D. and Sykes, B.D., 1989, Structure and dynamics of detergent-solubilised M13 coat protein (an integral membrane protein) determined by 13C and 15N NMR spectroscopy, in: “Biochemistry and Cell Biology,” in press.Google Scholar
  61. Henry, G.D., O’Neil, J.D.J., Weiner, J.H. and Sykes, B.D., 1986a, Hydrogen exchange in the hydrophilic regions of detergent-solubilized M13 coat protein detected by 13C nuclear magnetic resonance isotope shifts, Biophys. J. 49:329.CrossRefGoogle Scholar
  62. Henry, G.D., Weiner, J.H. and Sykes, B.D., 1986b, Backbone dynamics of a model membrane protein: 13C NMR spectroscopy of alanine methyl groups in detergent-solubilized Ml3 coat protein, Biochemistry 25:590.CrossRefGoogle Scholar
  63. Henry, G.D., Weiner, J.H. and Sykes, B.D., 1987, Backbone dynamics of a model membrane protein: measurement of individual amide hydrogen-exchange rates in detergent-solubilized M13 coat protein using 13C NMR hydrogen/deuterium isotope shifts, Biochemistry 26:3626.CrossRefGoogle Scholar
  64. Hilber, D.W., Harpold, L., Dell-Acqua, M., Pourtabbed, T., Gerlt, J.A., Wilde, J.W. and Bolten, P.H., 1989, Isotopic labeling with hydrogen-2 and carbon-13 to compare conformations of proteins and mutants generated by site-directed mutagenesis: Part 1, Methods Enzymol., 177:74.CrossRefGoogle Scholar
  65. Ho, C., Dowd, S.R. and Post, J.F.M., 1985, 19F NMR investigations of membranes, Curr. Top. Bioenerg. 14:53.Google Scholar
  66. Hyberts, S.G., Marki, W. and Wagner, G., 1987, Sterospecific assignments of side-chain protons and characterization of torsion angles in Eglin c, E J. Bioch 164:625.CrossRefGoogle Scholar
  67. Jardetzky, O., 1965, An approach to the determination of the active site of an enzyme by nuclear magnetic resonance spectroscopy, in “Proceedings of the International Symposium on Nuclear Magnetic Resonance,” Tokyo, Japan, N-3–14.Google Scholar
  68. Jardetzky, O., 1981, NMR studies of macromolecular dynamics, Ace. Chem. Res. 14:291.CrossRefGoogle Scholar
  69. Kainosho, M. and Tsuji, T., 1982, Assignment of the three methionyl carbonyl carbon resonances in Streptomyces substilisin inhibitor by a carbon-13 and nitrogen-15 double-labeling technique. A new strategy for studies of proteins in solution, Biochemistry 21:6273.CrossRefGoogle Scholar
  70. Kainosho, M., Nagao, H. and Tsuji, T., 1987, Local structural features around the C-terminal segment of Streptomyces subtilisin inhibitor studied by carbonyl carbon nuclear magnetic resonances of three phenylalanyl residues, Biochemistry 26:1068.CrossRefGoogle Scholar
  71. Kalbitzer, H.R., Leberman, R. and Wittinghofer, A., 1985, 1H NMR spectroscopy on elongation factor Tu from Escherichia coli, FEBS Lett. 180:40.CrossRefGoogle Scholar
  72. Karplus, S. and Karplus, M., 1972, Nuclear magnetic resonance determination of the angle ψ in peptides, Proc. Natl. Acad. Sci. USA 69:3204.ADSCrossRefGoogle Scholar
  73. Kato, K., Matsunaga, C., Nishimura, Y., Waelchli, M., Kainosho, M. and Arata, Y., 1989, Application of 13C nuclear magnetic resonance spectroscopy to molecular structural analyses of antibody molecules, J. Biochem. (Tokyo), in press.Google Scholar
  74. Katz, J.J. and Crespi, H.L., 1966, Deuterated organisms: cultivation and uses, Science (Washington, D.C.) 151:1187.ADSCrossRefGoogle Scholar
  75. Kay, L.E., Brooks, B., Torchia, D., Sparks, S. and Bax, A., 1989a, Measurement of backbone J couplings in proteins by two-dimensional heteronuclear multiple quantum NMR, J. Cell. Biochem. Supplement 13A:31.Google Scholar
  76. Kay, L.E., Jue, T.L., Bangerter, B. and Demou, P.C., 1987, Sensitivity enhancement of 13C Tl measurements via polarization transfer, J. Magn. Res. 73:558.Google Scholar
  77. Kay, L.E., Marion, D. and Bax, A., 1989b, Practical aspects of 3D heteronuclear NMR of proteins, J. Magn. Res., in press.Google Scholar
  78. Kojiro, C.L. and Markley, J.L., 1983, Connectivity of proton and carbon spectra of the blue copper protein, plastocyanin, established by two-dimensional nuclear magnetic resonance, FEBS Lett. 162:52.CrossRefGoogle Scholar
  79. Kowalsky, A., 1962, Nuclear magnetic resonance studies of proteins, J. Biol. Chem. 237:1807.Google Scholar
  80. Kurland, R.J., Davis, D.G. and Ho, C., 1968, Paramagnetic proton nuclear magnetic resonance shifts of metmyoglobin, methemoglobin, and hemin derivatives, J. Am. Chem. Soc. 90:2700.CrossRefGoogle Scholar
  81. Leighton, P. and Lu, P., 1987, λ cro repressor complex with OR3 DNA: 15N NMR observations, Biochemistry 26:7262.CrossRefGoogle Scholar
  82. LeMaster, D.M. and Richards, F.M., 1988, NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteration, Biochemistry 27:142.CrossRefGoogle Scholar
  83. LeMaster, D.M., 1987, Chiral B and random fractional deuteration for the determination of protein sidechain conformation by NMR, FEBS Lett. 223:191.CrossRefGoogle Scholar
  84. LeMaster, D.M., 1988, Protein NMR resonance assignment by isotropic mixing experiments on random fractionally deuterated samples, FEBS Lett. 233:326.CrossRefGoogle Scholar
  85. LeMaster, D.M., 1989, Deuteration in 1H protein NMR, Methods Enzymol., in press.Google Scholar
  86. Lerner, L. and Bax, A., 1986, Sensitivity-enhanced two-dimensional heteronuclear relayed coherence transfer NMR spectroscopy, J. Magn. Res. 69:375.Google Scholar
  87. Levitt, M.H. and Ernst, R.R., 1983, Improvement of pulse performance in NMR coherence transfer experiments. A compensated INADEQUATE experiment, Mol. Physics 50:1109.ADSCrossRefGoogle Scholar
  88. Live, D.H., Davis, D.G., Agosta, W.C. and Cowburn, D., 1984, Observation of 1000-fold enhancement of 15N NMR via proton-detected multiquantum coherences: studies of large peptides, J. Am. Chem. Soc. 106:6104.CrossRefGoogle Scholar
  89. Mandel, M., 1965, Proton magnetic resonance spectra of some proteins, J. Biol. Chem. 240:1586.Google Scholar
  90. Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A. M., and Clore, G. M., 1989a, Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to Interleukin 1B, Biochemistry 28, 6150.CrossRefGoogle Scholar
  91. Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. and Bax, A., 1989b, Three-dimensional heteronuclear NMR of 15N labeled proteins, J. Am. Chem. Soc. 111:1515.CrossRefGoogle Scholar
  92. Markley, J.L. and Cheung, S.M., 1973, Differential exchange of the C2-hydrogens of histidine side chains in native proteins: proposed general technique for the assignment of histidine NMR peaks in proteins, U.S. Atomic Energy Commission CONF-730525, 103.Google Scholar
  93. Markley, J.L. and Kato, I., 1975, Assignment of the histidine proton magnetic resonance peaks of soybean trypsin inhibitor (Kunitz) by a differential deuterium exchange technique, Biochemistry 14:3234.CrossRefGoogle Scholar
  94. Markley, J.L., 1972, High-resolution proton magnetic resonance spectroscopy of selectively deuterated enzymes, Methods Enzymol. 26:605.CrossRefGoogle Scholar
  95. Markley, J.L., 1975, Correlation proton magnetic Resonanace studies at 250 MHz of bovine pancreatic ribonuclease. I. Reinvestigation of the histidine peak assignments, Biochemistry 14:3546.CrossRefGoogle Scholar
  96. Markley, J.L., 1989, Two-dimensional nuclear magnetic resonance spectroscopy of proteins: an overview, Methods Enzymol. 176:12.CrossRefGoogle Scholar
  97. Markley, J.L., Putter, I. and Jardetzky, O., 1968, High-resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease, Science (Washington, D.C.) 161:1249.ADSCrossRefGoogle Scholar
  98. Markley, J.L., Westler, W.M., Chan, T.-M., Kojiro, C. and Ulrich, E.L., 1984, Two-dimensional NMR approaches to the study of protein structure and function, Federation Proc. 43:2648.Google Scholar
  99. McCain, D.C., Ulrich, E.L. and Markley, J.L., 1988, NMR relaxation study of internal motions in staphylococcal nuclease, J. Magn. Res. 80:296.Google Scholar
  100. McDonald, C.C. and Phillips, W.D., 1967, Manifestations of the tertiary structures of proteins in high-frequency nuclear magnetic resonance, J. Am. Chem. Soc. 89:6332.CrossRefGoogle Scholar
  101. Mcintosh, L.P., Griffey, R.H., Muchmore, D.C., Nielson, C.P., Redfield, A.G. and Dahlquist, F.W., 1987, Proton NMR measurements of bacteriophage T4 lysozyme aided by 15N isotopic labeling: structural and dynamic studies of larger proteins, Proc. Natl. Acad. Sci. USA 84:1244.ADSCrossRefGoogle Scholar
  102. Meadows, D.H., Markley, J.L., Cohen, J.S. and Jardetzky, O., 1967, Nuclear magnetic resonance sudies of the structure and binding sites of enzymes. I. Histidine residues, Proc. Natl. Acad. Sci. USA 58:1307.ADSCrossRefGoogle Scholar
  103. Montelione, G.T. and Wagner, G., 1989a, 2D chemical exchange NMR spectroscopy by proton-detected heteronuclear correlation, J. Am. Chem. Soc. 111:3096.CrossRefGoogle Scholar
  104. Montelione, G.T. and Wagner, G., 1989b, Accurate measurements of homonuclear HN-Hα coupling constants in polypeptides using heteronuclear 2D NMR experiments, J. Am. Chem. Soc., in press.Google Scholar
  105. Montelione, G.T. and Wagner, G., 1989c, 1H, 13C, 15N triple resonance experiments for accurate measurements of homonuclear HN-Hα vicinal coupling constants and identification of sequential connections in polypeptides, Relaxation Times 6: 2.Google Scholar
  106. Montelione, G.T., Winkler, M.E., Rauenbuehler, P. and Wagner, G., 1989, Accurate measurements of long-range heteronuclear coupling constants from homonuclear 2D NMR spectra of isotope-enriched proteins, J. Magn. Res. 82:198.Google Scholar
  107. Mooberry, E.S., Oh, B.-H. and Markley, J.L., 1989, Improvement of 13C–15N chemical shift correlation spectroscopy by implementing time proportional phase incrementation, J. Magn. Res., in press.Google Scholar
  108. Muchmore, D.C., Mcintosh, L.P., Russell, C.B., Anderson, D.E. and Dahlquist, F.W., 1989, Expression and 15N labeling of proteins for proton and nitrogen-15 NMR, Methods Enzymol., in press.Google Scholar
  109. Nagayama, K., Anil Kumar, Wiithrich, K. and Ernst, R.R., 1980, Experimental techniques of two-dimensional correlated spectroscopy, J. Magn. Res. 40:321.Google Scholar
  110. Niemczura, W.P., Helms, G.L., Chesnick, A.S., Moore, R.E. and Bornemann, V., 1989, Carbon-detected correlation of carbon- 13-nitrogen-15 chemical shifts, J. Magn. Res. 81:635.Google Scholar
  111. Nirmala, N.R. and Wagner, G., 1988, Measurement of 13C relaxation times in proteins by two-dimensional heteronuclear 1H–13C correlation spectroscopy, J. Am. Chem. Soc. 110:7557.CrossRefGoogle Scholar
  112. Nirmala, N.R. and Wagner, G., 1989, Measurement of 13C spin-spin relaxation times by two- dimensional heteronuclear 1H–13C correlation spectroscopy, J. Magn. Res. 82:659.Google Scholar
  113. Noren, C.J., Anthony-Cahill, S.J., Griffith, M.C. and Schultz, P.G., 1989, A general method for site-specific incorporation of unnatural amino acids into proteins, Science (Washington D.C.) 244:182.ADSCrossRefGoogle Scholar
  114. Oh, B.-H. and Markley, J.L., 1989, Complete carbon-13 resonance assignments of a tryptophan in L-lysyl-L-tryptophyl-L-lysine by single-bond and multiple-bond correlated hydrogen-1-carbon-13 two-dimensional NMR, Biopolymers, in press.Google Scholar
  115. Oh, B.-H., Mooberry, E.S. and Markley, J.L., Multinuclear magnetic resonance studies of the 2Fe–2S* ferredoxin from Anabaena sp. strain PCC 7120. 2. Sequence-specific carbon-13 and nitrogen-15 resonance assignments of the oxidized form, submitted to Biochemistry. Google Scholar
  116. Oh, B.-H., Westler, W.M., Darba, P. and Markley, J.L., 1988, Protein carbon-13 spin systems by a single two-dimensional nuclear magnetic resonance experiment, Science 240:908.ADSCrossRefGoogle Scholar
  117. Oh, B.-H., Westler, W.M. and Markley, J.L., 1989, Carbon-13 spin system directed strategy for assigning cross peaks in the COSY fingerprint region of a protein, J. Am. Chem. Soc. 111:3083.CrossRefGoogle Scholar
  118. Ortiz-Polo, G., Krishnamoorthi, R., Markley, J.L., Live, D.H., Davis, D.G. and Cowburn, D., 1986, Natural-abundance 15N NMR studies of turkey ovomucoid third domain. Assignment of peptide 15N resonances to the residues at the reactive site region via proton-detected multiple-quantum coherence, J. Magn. Res. 68:303.Google Scholar
  119. Oschkinat, H., Griesinger, C., Kraulis, P.J., Sorensen, O.W., Ernst, R.R., Gronenborn, A.M. and Clore, G.M., 1988, Three-dimensional NMR spectroscopy of a protein in solution, Nature 332:374.ADSCrossRefGoogle Scholar
  120. Otting, G., Senn, H., Wagner, G. and Wüthrich, K., 1986, Editing of 2D 1H NMR spectra using X half-dilters. Combined use with residue-selective 15N labeling of proteins, J. Magn. Res. 70:500.Google Scholar
  121. Ranee, M., Wright, P.E., Messerle, B.A. and Field, L.D., 1987, “Site-selective observation of nuclear Overhauser effects in proteins via isotopic labeling, J. Am. Chem. Soc. 109:1591.CrossRefGoogle Scholar
  122. Richarz, R. and Wüthrich, K., 1978, Carbon-13 NMR chemical shifts of the common amino acid residues measured in aqueous solutions of the linear tetrapeptides H-Gly-Gly-X-1-Ala-OH, Biopolymers 17:2133.CrossRefGoogle Scholar
  123. Richarz, R., Tschesche, H. and Wüthrich, K., 1980, Carbon-13 nuclear magnetic resonance studies of the selectively isotope-labeled reactive site peptide bond of the basic pancreatic trypsin inhibitor in the complexes with trypsin, trypsinogen, and anhydrotrypsin, Biochemistry 19:5711.CrossRefGoogle Scholar
  124. Saunders, M., Wishnia, A. and Kirkwood, J.G., 1957, The nuclear magnetic resonance spectrum of ribonuclease, J. Am. Chem. Soc. 79:3289.CrossRefGoogle Scholar
  125. Senn, H., Eugster, A., Otting, G., Suter, F. and Wüthrich, K., 1987a, 15N labeled P22 c2 repressor for nuclear magnetic resonance studies of protein-DNA interactions, Eur. Biophys.J. 14:301.CrossRefGoogle Scholar
  126. Senn, H., Otting, G. and Wüthrich, K., 1987b, Protein structure and interactions by combined use of sequential NMR assignments and isotope labeling, J. Am. Chem. Soc. 109:1090.CrossRefGoogle Scholar
  127. Senn, H., Werner, B., Messerle, B.A., Weber, C., Traber, R. and Wüthrich, K., 1989, Stereospecific assignment of the methyl 1H NMR lines of valine and leucine in polypeptides by nonrandom 13C labeling, FEBS Lett., in press.Google Scholar
  128. Shaka, A.J., Keeler, J., Frenkiel, T. and Freeman, R., 1983, An improved sequence for broadband decoupling: WALTZ-16, J. Magn. Res. 52:335.Google Scholar
  129. Shon, K. and Opella, S.J., 1989, Detection of 1H homonuclear NOE between amide sites in proteins with 1H/15N heteronuclear correlation spectroscopy, J. Magn. Res. 82:193.Google Scholar
  130. Shon, R., Schrader, P., Opella, S., Richards, J. and Tomich, J., 1989, NMR spectra of synthetic membrane bound coat protein species, in: “Frontiers of NMR in Molecular Biology,” UCLA Symposium, in press.Google Scholar
  131. Sklenar, V. and Bax, A., 1987, Two-dimensional heteronuclear chemical-shift correlation in proteins at natural abundance 15N and 13C levels, J. Magn. Res. 71:379.Google Scholar
  132. Sklenar, V., Torchia, D. and Bax, A., 1987, Measurement of carbon-13 longitudinal relaxation using 1H detection, J. Magn. Res. 73:375.Google Scholar
  133. Smith, G.M., Yu, L.P. and Domingues, D.J., 1987b, Directly observed 15N NMR spectra of uniformly enriched proteins, Biochemistry 26:2202.CrossRefGoogle Scholar
  134. Stockman, B.J. and Markley, J.L., 1989, Stable-isotope-assisted protein NMR spectroscopy in solution, in: “Advances in Biophysical Chemistry,” in press.Google Scholar
  135. Stockman, B.J., Reily, M.D., Westler, W.M., Ulrich, E.L. and Markley, J.L., 1989, Concerted two-dimensional NMR approaches to hydrogen-1, carbon-13, and nitrogen-15 resonance assignments in proteins, Biochemistry 28:230.CrossRefGoogle Scholar
  136. Stockman, B.J., Westler, W.M., Darba, P. and Markley, J.L., 1988a, Detailed analysis of carbon-13 NMR spin systems in a uniformly carbon-13 enriched protein: flavodoxin from Anabaena 7120, J. Am. Chem. Soc. 100:4095.CrossRefGoogle Scholar
  137. Stockman, B.J., Westler, W.M., Mooberry, E.S. and Markley, J.L., 1988b, Flavodoxin from Anabaena: uniform nitrogen-15 enrichment andhydrogen-1, nitrogen-15, and phosphorus-31 NMR investigations of the flavin mononucleotide binding site in the reduced and oxidized states, Biochemistry 27:136.CrossRefGoogle Scholar
  138. Summers, M.F., 1988, 113Cd NMR spectroscopy of coordination compounds and proteins, Coordination Chem. Rev. 86:43.CrossRefGoogle Scholar
  139. Torchia, D.A., Sparks, S.W. and Bax, A., 1988, NMR signal assignments of amide protons in the a-helical domains of staphylococcal nuclease, Biochemistry 27:5135.CrossRefGoogle Scholar
  140. Tsang, P., Fieser, T.M., Ostresh, J.M., Houghten, R.A., Lerner, R.A. and Wright, P.E., 1989, Solution NMR studies of Fab’-peptide complexes, in: “Frontiers of NMR in Molecular Biology,” UCLA Symposium, in press.Google Scholar
  141. Tsang, P., Fieser, T.M., Ostresh, J.M., Lerner, R.A. and Wright, P.E., 1988, Isotope-edited NMR studies of Fab’-peptide complexes, Peptide Research 1:87.Google Scholar
  142. Vuister, G.W. and Boelens, R., 1987, Three-dimensional J-resolved NMR spectroscopy, J. Magn. Res. 73:328.Google Scholar
  143. Vuister, G.W., Boelens, R. and Kaptein, R., 1988, Nonselective three-dimensional NMR spectroscopy. The 3D NOE-HOHAHA experiment, J. Magn. Res. 80:176.Google Scholar
  144. Wagner, G., Nirmala, N.R., Montelione, G.T. and Hyberts, S., 1989, Static and dynamic aspects of protein structure, in: “Frontiers of NMR in Molecular Biology,” UCLA Symposium, in press.Google Scholar
  145. Wang, J., Hinck, A.P., Loh, S.N. and Markley, J.L., 1989a Two-dimensional NMR studies of staphylococcal nuclease: 2. sequence-specific assignments of carbon-13 and nitrogen-15 signals from the (nuclease H124L).deoxythymidine-3’,5’-bisphosphate.Ca2+ ternary complex, submitted.Google Scholar
  146. Wang, J., LeMaster, D.M. and Markley, J.L., 1989b, Two-dimensional 1H NMR studies of Staphylococcal nuclease: 1. Solution structure of the (nuclease H124L)-(Deoxythymidine- 3’,5’-bisphosphate)-Ca+2 ternary complex, submitted.Google Scholar
  147. Weiner, J.H., Dettman, H.D., Henry, G.D., O’Neil, J.D.J. and Sykes, B.D., 1987, Nuclear magnetic resonance studies of a model membrane protein (M13 coat protein) reconstituted in detergent micelles and phospholipid vesicles, Biochem. Soc. Trans. 15:81.Google Scholar
  148. Weiss, M.A., Redfield, A.G. and Griffey, R.H., 1986, Isotope-setected 1H NMR studies of proteins: a general strategy for editing interproton nuclear Overhauser effects by heteronuclear decoupling, with application to phage λ repressor, Proc. Natl. Acad. Sci. USA 83:1325.ADSCrossRefGoogle Scholar
  149. Westler, W.M., Kainosho, M., Nagao, H., Tomonaga, N. and Markley, J.L., 1988a, Two-dimensional NMR straegies for carbon-carbon correlations and sequence-specific assignments in carbon-13 labeled proteins, J. Am. Chem. Soc. 110:4093.CrossRefGoogle Scholar
  150. Westler, W.M., Stockman, B.J., Hosoya, Y., Miyake, Y., Kainosho, M. and Markley, J.L., 1988b, Correlation of carbon-13 and nitrogen-15 chemical shifts in selectively and uniformly labeled proteins by heteronuclear two-dimensional NMR spectroscopy, J. Am. Chem. Soc. 110:6256.CrossRefGoogle Scholar
  151. Wilde, J.A., Bolton, P.H., Hilber, D.A., Harpold, L., Pourtabbed, T., Dell’Acqua, M. and Gerlt, J. A., 1989, Isotopic labeling with hydrogen-2 and carbon-13 to compare conformations of proteins and mutants generated by site-directed mutagenesis: Part 2, Methods Enzym. 177:282.CrossRefGoogle Scholar
  152. Wüthrich, K., 1976, “NMR in Biological Research: Peptides and Proteins,” North-Holland/American Elsevier, 164.Google Scholar
  153. Wüthrich, K., 1986, “NMR of Proteins and Nucleic Acids,” Wiley, New York.Google Scholar
  154. Wüthrich, K., 1989, Protein structure determination in solution by nuclear magnetic resonance spectroscopy, Science (Washington, D.C.) 243:45.CrossRefGoogle Scholar
  155. Wüthrich, K., Shulman, R.G. and Peisach, J., 1968, High-resolution proton magnetic resonance spectra of sperm whale cyanometmyoglobin, Proc. Natl. Acad. Sci. USA 60:373.ADSCrossRefGoogle Scholar
  156. Wüthrich, K., Wider, G., Wagner, G. and Braun, W., 1982, Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance, J. Mol. Biol. 155:311.CrossRefGoogle Scholar
  157. Zehfus, M.H., Reily, M.D., Ulrich, E.L., Westler, W.M. and Markley, J.L., 1989, Complete 1H, 13C, and 15N resonance assignments for a ferrocytochrome c533 heme by multinuclear NMR spectroscopy, Arch. Biochem. Biophys, in press.Google Scholar
  158. Zuiderweg, E.R.P. and Fesik, S.W., 1989, Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a, Biochemistry 28:2387.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Brian J. Stockman
    • 1
  • John L. Markley
    • 1
  1. 1.Department of Biochemistry, College of Agricultural and Life SciencesUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations