Advertisement

Structural Homologies in G-Binding Proteins

  • Brian F. C. Clark
  • Michael Jensen
  • Morten Kjeldgaard
  • Søren Thirup
Part of the New Horizons in Therapeutics book series (NHTH)

Abstract

The common property of G-binding proteins is, by definition, the ability to bind guanine nucleotides. In this review we shall make our task easier by concentrating on the domain or subunits responsible for carrying out this function. This is not, however, intended to preempt the issue: a common function of such a general nature, exercised in so many different biological organisms and biochemical contexts, does not automatically imply a high, or even a detectable, degree of homology among the proteins that proffer it. Indeed, the G-proteins provide a spectrum of degrees of kinship that range from the intimate to the unrecognizable. Satisfyingly, this spectrum correlates largely with similarity of function, at least within the general classes of G-protein. Nevertheless, between these classes it remains a matter for conjecture whether the difference between just-detectable homology and no detectable homology, significant as it may be in the statistical sense, is significant in the subjective sense of “telling us anything about evolution.”

Keywords

Elongation Factor Structural Homology Euglena Gracilis Parallel Strand Mucor Racemosus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbacid, M., 1987, ras gene, Ann. Rev. Biochem. 56:779–827.PubMedCrossRefGoogle Scholar
  2. Bohr, H., Bohr, J., Brunak, S., Cotterill, R. M. J., Lautrup, B., Nörskov, L., Olesen, O., and Petersen, S. B., 1988, Protein secondary structure and homology by neural networks: the a-helices in rhodopsin, FEBS Len. 241: 223–228.CrossRefGoogle Scholar
  3. Brands, J. H. G. M., Maassen, J. A., Van Hemert, F. J., Amons, R., and Möller, W., 1986, The primary structure of the a subunit of human elongation factor 1. Structural aspects of guaninenucleotide-binding sites, Eur. J. Biochem. 155: 167–171.PubMedCrossRefGoogle Scholar
  4. Cenatiempo, Y., Deville, F., Dondon, J., Grunberg-Manago, M., Sacerdot, C., Hershey, J. W. B., Hansen, H. F., Petersen, H. U., Clark, B. F. C., Kjeldgaard, M., la Cour, T. F. M., Mortensen, K. K., and Nyborg, J., 1987, The protein synthesis initiation factor 2 G-domain. Study of a functionally active C-terminal 65-kilodalton fragment of IF2 from Escherichia cols, Biochemistry 26: 5070–5076.PubMedCrossRefGoogle Scholar
  5. Chardin, P., and Tavitian, A., 1986, The ral gene: A new ras related gene isolated by the use of a synthetic probe, EMBO J. 5: 2203–2208.PubMedGoogle Scholar
  6. Clark, B., 1980, The elongation step of protein biosynthesis, Trends Biochem. Sci. 5: 207–210.CrossRefGoogle Scholar
  7. Dever, T. E., Glynias, M. J., and Merrick, W. C., 1987, GTP-binding domain: Three consensus sequence elements with distinct spacing, Proc. Natl. Acid Sci. USA 84: 1814 - -1818.CrossRefGoogle Scholar
  8. Dever, T. E. and Merrick, W. C., 1989, The GTP-binding domain revisited, in: The Guanine-Nucleotide Binding Proteins. Common Structural and Functional Properties, (L. Bosch, B. Kraal, and A. Parmeggiani, eds.), EMBO/NATO/CEC Adv. Res. Workshop, Renesse, The Netherlands, Aug. 1988, Plenum Press, New York, pp. 35–48.Google Scholar
  9. de Vos, A. M., Tong, L., Milburn, M. V., Matias, P. M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E., and Kim, S-H., 1988, Three-dimensional structure of an oncogene protein: Catalytic domain of human c-H-ras p21, Science 239: 888–891.PubMedCrossRefGoogle Scholar
  10. de Vos, A. M., Tong, L., Milburn, M. V., Matias, P. M. and Kim, S-H., 1989, Three-dimensional structure of ras p21 proteins, in: The Guanine-Nucleotide Binding Proteins. Common Structural and Functional Properties, (L. Bosch, B. Kraal and A. Parmeggiani, eds.) EMBO/NATO/CEC Adv. Res. Workshop, Renesse, The Netherlands, Aug. 1988 Plenum Press, New York.Google Scholar
  11. Gamier, J., Osguthorpe, D. J., and Robson, B., 1978, Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, J. Mol. Biol. 120: 97–120.CrossRefGoogle Scholar
  12. Gibbs, J. B., Sigal, I. S., and Scolnick, E. M., 1985, Biochemical properties of normal and oncogenic ras p21, Trends Biochem. Sci. 10: 350–353.CrossRefGoogle Scholar
  13. Gilman, A. G., 1987, G proteins: Transducers of receptor-generated signals, Annu. Rev. Biochem. 56: 615–649.PubMedCrossRefGoogle Scholar
  14. Guy, B., Kieny, M. P., Riviere, Y., Le Peuch, C., Dott, K., Girard, M., Montagnier, L., and Lecocq, J-P., 1987, HIV F/3’ orf encodes a phosphorylated GTP-binding protein resembling an oncogene product, Nature 330: 266–269.PubMedCrossRefGoogle Scholar
  15. Halliday, K. R., 1984, Regional homology in GTP-binding proto-oncogene products and elongation factors, J. Cyclic Nucleotide Prot. Phosphoryl, Res. 9: 435–448.Google Scholar
  16. Haubruck, H., Disela, C., Wagner, P., and Gallwitz, D., 1987, The ras-related ypt protein is a ubiquitous eukaryotic protein: Isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPT1 gene, EMBO J. 6: 4049–4053.PubMedGoogle Scholar
  17. Hovemann, B., Richter, S., Walldorf, U., and Cziepluch, C., 1988, Two genes encode related cytoplasmic elongation factor la (EF-1a) in Drosophila melanogaster with continuous and stage specific expression, Nucl. Acids Res. 16: 3175–3194.PubMedCrossRefGoogle Scholar
  18. Hwang, Y-W., and Miller, D. L., 1987, A mutation that alters the nucleotide specificity of elongation factor Tu, a GTP-regulatory protein, J. Biol. Chem. 262: 13081–13085.PubMedGoogle Scholar
  19. Jacquet, E., and Parmeggiani, A., 1988, Structure—function relationships in the GTP binding domain of EF-Tu: Mutation of Va120, the residue homologous to position 12 in p21, EMBO J. 7: 2861–2867.PubMedGoogle Scholar
  20. Jurnak, F., 1985, Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins, Science 230: 32–36.PubMedCrossRefGoogle Scholar
  21. Jurnak, F. A., 1988, The three-dimensional structure of c-H-ras p21: Implications for oncogene and G protein studies, Trends Biochem. Sci. 13: 195–198.PubMedCrossRefGoogle Scholar
  22. Kushiro, A., Shimizu, M., and Tomita, K-I., 1987, Molecular cloning and sequence determination of the tuf gene coding for the elongation factor Tu of Thermus thermophilus HB8. Eur. J. Biochem. 170: 93–98.PubMedCrossRefGoogle Scholar
  23. la Cour, T. F. M., Nyborg, J., Thirup, S., and Clark, B. F. C., 1985, Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography, EMBO J. 4: 2385–2388.PubMedGoogle Scholar
  24. Lebennan, R., and Egner, U., 1984, Homologies in the primary structure of GTP-binding proteins: The nucleotide-binding site of EF-Th and p21, EMBO J. 3: 339–341.Google Scholar
  25. Lechner, K., and Böck, A., 1987, Cloning and nucleotide sequence of the gene for an archaebacterial protein synthesis elongation factor lb, Mol. Gen. Genet. 208: 523–528.CrossRefGoogle Scholar
  26. Lenstra, J. A., Vliet, A. V., Amberg, A. C., Van Hemert, F. J., and Möller, W., 1986, Genes coding for the elongation factor EF-la in Anemia, Eur. J. Biochem. 155: 475–483.PubMedCrossRefGoogle Scholar
  27. Linz, J. E., Lira, L. M., and Sypherd, P. S., 1986, The primary structure and the functional domains of an elongation factor 1-a from Mucor racemosus, J. Biol. Chem. 261: 15022–15029.PubMedGoogle Scholar
  28. Mandelkow, E-M., Hermann, M., and Rühl, U., 1985, Zitbulin domains probed by limited proteolysis and subunit-specific antibodies, J. Mol. Biol. 185: 311–327.PubMedCrossRefGoogle Scholar
  29. March, P. E., and Inouye, M., 1985, GTP-binding membrane protein of Escherichia coli with sequence homology to initiation factor 2 and elongation factors Tu and G, Proc. Natl. Acad. Sci. USA 82: 7500–7504.PubMedCrossRefGoogle Scholar
  30. Masters, S. B., Stroud, R. M., and Boume, H. R., 1986, Family of G protein a chains: Amphipathic analysis and predicted structure of functional domains, Prot. Eng. 1: 47–54.CrossRefGoogle Scholar
  31. McCormick, F., Clark, B. F. C., la Cour, T. F. M., Kjeldgaard, M., Norskov-Lauritsen, L., and Nyborg, J., 1985, A model for the tertiary structure of p21, the product of the ras oncogene, Science 230: 78–82.PubMedCrossRefGoogle Scholar
  32. Montandon, P-E., and Stutz, E., 1983, Nucleotide sequence of a Euglena gracilis chloroplast genome region coding for the elongation factor Tu; evidence for a spliced mRNA, Nucl. Acids Res. 11: 5877–5892.PubMedCrossRefGoogle Scholar
  33. Möller, W., and Amons, R., 1985, Phosphate-binding sequences in nucleotide-binding proteins, FEBS Lett. 186: 1–7.PubMedCrossRefGoogle Scholar
  34. Nagata, S., Tsunetsugu-Yokota, Y., Naito, A., and Kaziro, Y., 1983, Molecular cloning and sequence determination of the nuclear gene coding for mitochondrial elongation factor Tu of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 80: 6192–6196.PubMedCrossRefGoogle Scholar
  35. Nyborg, J., and la Cour, T. F. M., 1989, New structural data on elongation factor-Tu:GDP based on X-ray crystallography, in: The Guanine-Nucleotide Binding Proteins. Common Structural and Functional Properties, (L. Bosch, B. Kraal and A. Parmeggiani, eds.), EMBO/NATO/CEC Adv. Res. Workshop, Renesse, The Netherlands, Aug. 1988, Plenum Press, New York, pp. 314.Google Scholar
  36. Parmeggiani, A., Swart, G. W. M., Mortensen, K. K., Jensen, M., Clark, B. F. C., Dente, L., and Cortese, R., 1987, Properties of a genetically engineered G domain of elongation factor Tu, Proc. Natl. Acad. Sci. USA 84: 3141–3145.PubMedCrossRefGoogle Scholar
  37. Rawis, R. L., 1987, G-proteins: Research unravels their role in cell communication, Chem. Eng. News Dec. 21: 26–39.Google Scholar
  38. Schirmaier, F., and Philippsen, P., 1984, Identification of two genes coding for the translation elongation factor EF-la of S. cerevisiae, EMBO J. 3: 3311–3315.PubMedGoogle Scholar
  39. Seidler, L., Peter, M., Meissner, F. and Sprinzl, M., 1987, Sequence and identification of the nucleotide binding site for the elongation factor Tu from Thermus thermophilus HB8, Nucl. Acids Res. 15: 9263–9277.PubMedCrossRefGoogle Scholar
  40. Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K., and Wigler, M. 1985, In yeast, ras proteins are controlling elements of adenylate cyclase, Cell 40: 27–36.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Brian F. C. Clark
    • 1
  • Michael Jensen
    • 1
  • Morten Kjeldgaard
    • 1
  • Søren Thirup
    • 1
  1. 1.Division of Biostructural Chemistry, Department of ChemistryAarhus UniversityAarhus CDenmark

Personalised recommendations