Model of Signal Transduction by G Proteins

Roles of α Subunits and βγ Dimers in Regulation of Ionic Channels and Adenylyl Cyclase
  • Lutz Birnbaumer
  • Atsuko Yatani
  • Ravi Iyengar
  • John D. Hildebrandt
  • Juan Codina
  • Arthur M. Brown
Part of the New Horizons in Therapeutics book series (NHTH)


About 80% of all hormone and neurotransmitter receptors interact with signal transducing GTP-binding proteins (G proteins) to modulate cell activity. G proteins are αβγ heterotrimers, and although not unequivocally proven, there is general agreement that receptors act by catalyzing their activation by GTP to give α*-GTP plus a βγ, at which point they regulate the activity of effector systems, and that they lose their regulatory activity after GTP is hydrolyzed to GDP by the a subunit and subunit reassociation to give an inactive αGDPβγ trimer. There is also agreement that effector systems, such as adenylyl cyclase, phosphodiesterases, and phospholipases, are “readout systems” that monitor and report through activity changes on the activation state of the G protein. This chapter discusses the molecular basis of signal transduction by G proteins: the pros and cons of whether G proteins dissociate into α plus βγs in the normal phospholipid environment and, if so, what can be said about the role that this dissociation reaction plays in the mode of action of receptors; and the α vs. βγ controversy that has arisen in two areas of G protein action: stimulation of K+ channels and inhibition of adenylyl cyclase. The chapter ends with a discussion of the roles of βγ dimers in signal transduction as perceived by the authors.


Adenylate Cyclase Adenylyl Cyclase Guanine Nucleotide Bovine Brain Phospholipid Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asano, T., Pedersen, S. E., Scott, C. W., and Ross, E. M., 1984, Reconstitution of catecholaminestimulated binding of guanosine 5’-O-(3-thiotriphosphate) to the stimulatory GTP-binding protein of adenylate cyclase, Biochemistry 23: 5460–5467.PubMedCrossRefGoogle Scholar
  2. Asano, T., Ogasawara, N., Kitajima, S., and Sano, M., 1986, Interaction of GTP-binding proteins with calmodulin, FEBS Leu. 203: 135–138.CrossRefGoogle Scholar
  3. Birnbaumer, L., 1987, Which G protein subunits are the active mediators in signal transduction, Trends Pharmacol. Sci. 8: 209–211.CrossRefGoogle Scholar
  4. Bimbaumer, L., and Brown, A. M., 1987, G protein opening of K+ channels, Nature 327: 21–22.CrossRefGoogle Scholar
  5. Birnbaumer, L., Swartz, T. L., Abramowitz, J., Mintz, P. W., and Iyengar, R., 1980, Transient and steady state kinetics of the interaction of nucleotides with the adenylyl cyclase system from rat liver plasma membranes: Interpretation in terms of a simple two-state model, J. Biol.Chem. 255: 3542–3551.PubMedGoogle Scholar
  6. Bimbaumer, L., Codina, J., Sunyer, T., Cerione, R. A. Rosenthal, W., Hildebrandt, J. D., Caron, M. G., Lefkowitz, R. J., and Sekura, R. D., 1985a, Structural and functional properties of N, and N,, the regulatory components of adenylyl cyclase, in: Pertussis Toxin and its Effects ( R. D. Sekura, J. Moss, and M. Vaughan, eds.), pp. 77–104, Academic Press, San Diego.Google Scholar
  7. Birnbaumer, L., Hildebrandt, J. D., Codina, J., Mattera, R., Cerione, R. A., Sunyer, T., Rojas, F. J., Caron, M. G., Lefkowitz, R. J., and Iyengar, R., 1985b, “Structural basis of adenylate cyclase stimulation and inhibition by distinct guanine nucleotide regulatory proteins,” in: Molecular Mechanisms of Signal Transduction ( P. Cohen and M. D. Houslay, eds.), pp. 131–182, Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  8. Brandt, D. R., and Ross, E. M., 1986, Catecholamine-stimulated GTPase cycle. Multiple sites of regulation by beta-adrenergic receptor and Mgz+ studied in reconstituted receptor-G, vesicles, J. Biol. Chem. 261: 1656–1664.PubMedGoogle Scholar
  9. Breitweiser, G. E., and Szabo, G., 1985, Uncoupling of cardiac muscarinic and beta-adrenergic receptors from ion channels by a guanine nucleotide analogue, Nature 317: 538–540.CrossRefGoogle Scholar
  10. Cassel, D., and Selinger, Z., 1976, Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes, Biochim. Biophys. Acta 252: 538–551.Google Scholar
  11. Cassel, D., and Selinger, Z., 1978, Mechanism of adenylate cyclase activation through the betaadrenergic receptor: Catecholamine-induced displacement of bound GDP by GTP, Proc. Natl. Acad. Sci. USA 75: 4155–4159.PubMedCrossRefGoogle Scholar
  12. Cerbai, E., Klöckner, and Isenberg, G., 1988, The a subunit of the GTP binding protein activates muscarinic potassium channels of the atrium, Science 240: 1782–1783.PubMedCrossRefGoogle Scholar
  13. Cerione, R. A., Codina, J., Benovic, J. L., Lefkowitz, R. J., Birnbaumer, L., and Caron, M. G., 1984, The Mammalian beta2-adrenergic receptor: Reconstitution of the pure receptor with the pure stimulatory nucleotide binding protein (N,) of the adenylate cyclase system, Biochemistry 23: 4519–4525.PubMedCrossRefGoogle Scholar
  14. Cerione, R. A., Staniszewski, C., Caron, M. G., Lefkowitz, R. J., Codina, J., and Birnbaumer, L., 1985, A role for N; in the hormonal stimulation of adenylate cyclase, Nature 318: 293–295.PubMedCrossRefGoogle Scholar
  15. Cerione, R. A., Staniszewski, C., Gierschik, P., Codina, J., Somers, R., Bimbaumer, L., Spiegel, A. M., Caron, M., and Lefkowitz, R. J., 1986, Mechanism of guanine nucleotide regulatory protein-mediated inhibition of adenylate cyclase. Studies with isolated subunits of transducin in a reconstituted system, J. Biol. Chem. 261: 9514–9520.PubMedGoogle Scholar
  16. Codina, J., Hildebrandt, J. D., Bimbaumer, L., and Sekura, R. D., 1984a, Effects of guanine nucleotides and Mg on human erythrocyte Ni and Ns, the regulatory components of adenylyl cyclase, J. Biol. Chem. 259: 11408–11418.PubMedGoogle Scholar
  17. Codina, J., Hildebrandt, J. D., Sekura, R. D., Bimbaumer, M., Bryan, J., Manclark, C. R., Iyengar, R., and Bimbaumer, L., 1984b, NS and N1, the stimulatory and inhibitory regulatory components of adenylyl cyclases. Purification of the human erythrocyte proteins without the use of activating regulatory ligands, J. Biol. Chem. 259: 5871–5886.PubMedGoogle Scholar
  18. Codina, J., Yatani, A., Grenet, D., Brown, A. M., and Bimbaumer, L., 1987a, The alpha subunit of Gk opens atrial potassium channels, Science 236: 442–445.PubMedCrossRefGoogle Scholar
  19. Codina, J., Grenet, D., Yatani, A., Bimbaumer, L., and Brown, A. M., 1987b, Hormonal regulation of pituitary GH3 cell K+ is mediated by its alpha subunit, FEBS Lett. 216: 104–106.PubMedCrossRefGoogle Scholar
  20. Codina, J., Olate, J., Abramowitz, J., Mattera, R., Cook, R. G., and Bimbaumer, L., 1988, Alpha;-3 cDNA encodes the alpha subunit of Gk, the stimulatory G protein of receptor-regulated K+ channels, J. Biol. Chem. 263: 6746–6750.PubMedGoogle Scholar
  21. Evans, T., Fawzi, A., Fraser, E. D., Brown, M. L., and Northup, J. K., 1987, Purification of a beta35 form of the beta—gamma complex common to G-proteins from human placental membranes, J. Biol.Chem. 262: 176–181.PubMedGoogle Scholar
  22. Ferguson, K. M., Higashijima, T., Smigel, M., and Gilman, A. G., 1986, The influence of bound GDP on the kinetics of guanine nucleotide binding to G proteins, J. Biol. Chem. 261: 7393–7399.PubMedGoogle Scholar
  23. Florio, V. A., and Stemweis, P. C., 1985, Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins, J. Biol. Chem. 260: 3477–3483.PubMedGoogle Scholar
  24. Fung, B. K-K., 1983, Characterization of transducin from bovine retinal rod outer segments I Separation and reconstitution of the subunits, J. Biol. Chem. 256: 10495–10502.Google Scholar
  25. Fung, B. K-K., Hurley, J. B., and Stryer, L., 1981, Flow of information in the light-triggered cyclic nucleotide cascade of vision, Proc. Natl. Acad. Sci. USA 78: 152–156.PubMedCrossRefGoogle Scholar
  26. Gilman, A. G., 1987, G proteins: Transducers of receptor-generated signals, Annu. Rev. Biochem. 56: 615–649.PubMedCrossRefGoogle Scholar
  27. Godchaux, W., III, and Zimmerman, W. F., 1979, Membrane-dependent guanine nucleotide binding and GTPase activities of soluble protein from bovine rod cell outer segments, J. Biol. Chem. 254: 7874–7884.PubMedGoogle Scholar
  28. Grandt, R., Aktories, K., and Jakobs, K. H., 1982, Guanine nucleotides and monovalent cations increase agonist affinity of prostaglandin E2 receptors in hamster adipocytes, Mol. Pharmacol. 22: 320–326.PubMedGoogle Scholar
  29. Graziano, M. P., Freissmuth, M., and Gilman, A. G., 1988, Expression of Gs,, in Escherichia coli: Purification and properties of two forms of the protein, J. Biol. Chem. 264: 409–418.Google Scholar
  30. Hildebrandt, J. D., and Bimbaumer, L., 1983, Inhibitory regulation of adenylyl cyclase in the absence of stimulatory regulation. Requirements and kinetics of guanine nucleotide induced inhibition of the cyc- S49 adenylyl cyclase, J. Biol. Chem. 258: 13141–13147.PubMedGoogle Scholar
  31. Hildebrandt, J. D., Hanoune, J., and Bimbaumer, L., 1982, Guanine nucleotide inhibition of cycS49 mouse lymphoma cell membrane adenylyl cyclase, J. Biol. Chem. 257: 14723–14725.PubMedGoogle Scholar
  32. Hildebrandt, J. D., Sekura, R. D., Codina, J., Iyengar, R., Manclark, C. R., and Bimbaumer, L., 1983, Stimulation and inhibition of adenylyl cyclases is mediated by distinct proteins, Nature 302: 706–709.PubMedCrossRefGoogle Scholar
  33. Hildebrandt, J. D., Codina, J., Risinger, R., and Bimbaumer, L., 1984a, Identification of a gamma subunit associated with the adenylyl cyclase regulatory proteins N, and N;, J. Biol.Chem. 259: 2039–2042.PubMedGoogle Scholar
  34. Hildebrandt, J. D., Codina, J., and Birnbaumer, L., 1984b, Interaction of the stimulatory and inhibitory regulatory proteins on the adenylyl cyclase system with the catalytic component of cyc- S49 cell membranes, J. Biol. Chem. 259: 13178–13185.PubMedGoogle Scholar
  35. Howlett, A. C., and Gilman, A. G., 1980, Hydrodynamic properties of the regulatory component of adenylate cyclase, J. Biol. Chem. 260: 2861–2866.Google Scholar
  36. Iyengar, R., Abramowitz, J., Riser, M, and Birnbaumer, L., 1980, Hormone receptor-mediated stimulation of the rat liver plasma membrane adenylyl cyclase system: Nucleotide effects and analysis in terms of a two-state model for the basic receptor-affected enzyme, J. Biol. Chem. 255: 3558–3564.PubMedGoogle Scholar
  37. Jakobs, K. H., Aktories, K., and Schultz, G., 1983, A nucleotide regulatory site for somatostatin inhibition of adenylate cyclase in S49 lymphoma cells, Nature 303: 177–178.PubMedCrossRefGoogle Scholar
  38. Jelsema, C. L., and Axelrod, J., 1987, Stimulation of phospholipase A2 activity in bovine rod outer segments by the beta—gamma subunits of transducin and its inhibition by the alpha subunit, Proc. Natl. Acad. Sci. USA 84: 3623–3627.PubMedCrossRefGoogle Scholar
  39. Kahn, R. A., and Gilman, A. G., 1984, ADP-ribosylation of Gs promotes the dissociation of its alpha and beta subunits, J. Biol. Chem. 259: 6235–6240.PubMedGoogle Scholar
  40. Kanaho, Y., Tsai, S-C., Adamik, R., Hewlett, E. L., Moss, J., and Vaughan, M., 1984, Rhodopsinenhanced GTPase activity of the inhibitory GTP-binding protein of adenylate cyclase, J. Biol. Chem. 259: 7378–7381.PubMedGoogle Scholar
  41. Katada, T., Bokoch, G. M., Northup, J. K., Ui, M., and Gilman, A. G., 1984a, The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein, J. Biol. Chem. 259: 3568–3577.PubMedGoogle Scholar
  42. Katada, T., Bokoch, G. M., Smigel, M. D., Ui, M., and Gilman, A. G., 1984b, The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and the inhibition of adenylate cyclase in S49 lymphoma cyc-and wild type membranes, J. Biol. Chem. 259: 3586–3595.PubMedGoogle Scholar
  43. Katada, T., Oinuma, M., Kusakabe, K., and Ui, M., 1987a, A new GTP-binding protein in brain tissues serving as the specific substrate of islet-activating protein, pertussis toxin, FEBS Lett. 213: 353–358.PubMedCrossRefGoogle Scholar
  44. Katada, T., Kusakabe, K., Oinuma, M., and Ui, M., 1987b, A novel mechanism for the inhibition of adenylate cyclase via inhibitory GTP-binding proteins. Calmodulin-dependent inhibition of the cyclase catalyst by the beta—gamma subunits of GTP-binding protein, J. Biol. Chem. 262: 11897–11900.PubMedGoogle Scholar
  45. Kent, R. S., DeLean, A., and Lefkowitz, R. J., 1980, A quantitative analysis of beta-adrenergic receptor interactions: Resolution of high and low affinity states of the receptor by computer modeling of ligand binding data, Mol. Pharmacol. 17: 14–23.PubMedGoogle Scholar
  46. Kim, M. H., and Neubig, R. R., 1985, Parallel inactivation of a2-adrenergic agonist binding and N1 by alkaline treatment, FEBS Lett. 192: 321–325.PubMedCrossRefGoogle Scholar
  47. Kirsch, G., Yatani, A., Codina, J., Birnbaumer, L., and Brown, A. M., 198$, The alpha subunit of Gk activates atrial K+ channels of embryonic chick, neonatal rat and adult guinea pig, Am. J. Physiol. 254:H1200–H1205.Google Scholar
  48. Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E. J., and Clapham, D. E., 1987a, The 3y subunits of GTP-binding proteins activate the muscarinic K+ channel in heart, Nature 325: 321–326.PubMedCrossRefGoogle Scholar
  49. Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E. J., and Clapham, D. E., 1987b, G Protein opening of K+ channels: Reply to Birnbaumer and Brown, Nature 327: 21–22.CrossRefGoogle Scholar
  50. Logothetis, D. E., Kim, D., Northup, J. K., Neer, E. J., and Clapham, D. E., 1988, Specificity of action of guanine nucleotide-binding regulatory protein subunits on the cardiac muscarinic K channel, Proc. Natl. Acad. Sci. USA 85: 5814–5818.PubMedCrossRefGoogle Scholar
  51. Maguire, M. E., Van Arsdale, P. M., and Gilman, A. G., 1976, An agonist-specific effect of guanine nucleotides on binding to the beta adrenergic receptor, Mol. Pharmacol. 12: 335–339.PubMedGoogle Scholar
  52. Mattera, R., Yatani, A., Kirsch, G. E., Graf, R., Olate, J., Codina, J., Brown, A. M., and Birnbaumer, L., 1989a, Recombinant a,-3 subunit of G protein activates Gk-gated K+ channels, J. Biol. Chem. 264: 465–471.PubMedGoogle Scholar
  53. Mattera, R., Graziano, M. P., Yatani, A., Zhou, Z., Graf, R., Codina, J., Birnbaumer, L., Gilman, A. G., and Brown, A. M., 1989b, Individual splice variants of the a subunit of the G protein Gs activate both adenylyl cyclase and Cat+ channels, Science 243: 804–807.PubMedCrossRefGoogle Scholar
  54. Michel, T., and Lefkowitz, R. J., 1982, Hormonal inhibition of adenylate cyclase. Alpha2-adrenergic receptors promote release of [3H]guanylylimidodiphosphate from platelet membrane, J. Biol. Chem. 257: 13557–13563.PubMedGoogle Scholar
  55. Moriarty, T. M., Gillo, B., Carty, D. J., Premont, R. G., Landau, E. M., and Iyengar, R., 1988, Beta—gamma subunits of GTP binding proteins inhibit muscarinic stimulation of phospholipase C, Proc. Natl. Acad. Sci. USA 85: 8865–8869.PubMedCrossRefGoogle Scholar
  56. Murayama, T., and Ui, M., 1984, [3H]GDP release from rat and hamster adipocyte membranes independently linked to receptors involved in activation or inhibition of adenylate cyclase. Differential susceptibility to two bacterial toxins, J. Biol. Chem. 259:761–769.Google Scholar
  57. Navon, S. E., and Fung, B. K-K., 1987, Characterization of transducin from bovine retinal rod outer segments. Participation of the amino-terminal region of T, in subunit interaction, J. Biol. Chem. 262: 15746–15751.PubMedGoogle Scholar
  58. Neer, E. J., Wolf, L. G., and Gill, D. M., 1987, The stimulatory guanine-nucleotide regulatory unit of adenylate cyclase from bovine cerebral cortex, Biochem. J. 241: 325–336.PubMedGoogle Scholar
  59. Northup, J. K., Smigel, M. D., Sternweis, P. C., and Gilman, A. G., 1983a, The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000dalton (alpha) subunit, J. Biol. Chem. 258: 11369–11376.PubMedGoogle Scholar
  60. Northup, J. k., Sternweis, P. C., and Gilman, A. G., 1983b, The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution, activity and properties of the 35,000 dalton (b) subunit, J. Biol. Chem. 258: 11361–11368.PubMedGoogle Scholar
  61. Pfaffinger, P. J., Martin, J. M., Hunter, D. D., Nathanson, N. M., and Hille, B., 1985, GTP-binding proteins couple cardiac muscarinic receptors to a K channel, Nature 317: 536–538.PubMedCrossRefGoogle Scholar
  62. Piomelli, D., Volterra, A., Dale, N., Siegelbaum, S. A., Kandel, E. R., Schwartz, J. H., and Belardetti, F., 1987, Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory cells, Nature 328: 38–43.PubMedCrossRefGoogle Scholar
  63. Rodbell, M., Krans, H. M. M., Pohl, S. L., and Birnbaumer, L., 1971, The glucagon-sensitive adenyl cyclase system in plasma membranes. IV. Binding of glucagon: Effect of guanyl nucleotides, J. Biol. Chem. 246: 1872–1876.PubMedGoogle Scholar
  64. Roof, D. J., Applebury, M. L., and Sternweis, P. C., 1985, Relationships within the family of GTPbinding proteins isolated from bovine central nervous system, J. Biol. Chem. 260: 16242–16249.PubMedGoogle Scholar
  65. Shorr, R. G. L., Lefkowitz, R. J., and Caron, M. G., 1981, Purification of the beta-adrenergic receptor. Identification of the hormone binding subunit, J. Biol. Chem. 256: 5820–5826.PubMedGoogle Scholar
  66. Smigel, M. D., 1986, Purification of the catalyst of adenylate cyclase, J. Biol. Chem. 261: 1976–1982.PubMedGoogle Scholar
  67. Soejima, M., and Noma, A., 1984, Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells, Pflügers Arch. 400: 424–431.PubMedCrossRefGoogle Scholar
  68. Tolkovsky, A. M., and Levitzki, A., 1978, Mode of coupling between the 3-adrenergic receptor and adenylate cyclase in turkey erythrocytes, Biochemistry 17: 3795–3810.PubMedCrossRefGoogle Scholar
  69. Toro, M-J., Montoya, E., and Birnbaumer, L., 1987, Inhibitory regulation of adenylyl cyclases. Evidence against a role for beta/gamma complexes of G proteins as mediators of G;-dependent hormonal effects, Mol. Endocrinol. 1: 669–676.PubMedCrossRefGoogle Scholar
  70. Tota, M. R., Kahler, K. R., and Schimerlik, M. I., 1987, Reconstitution of the purified porcine atrial muscarinic acetylcholine receptor with purified porcine atrial inhibitory guanine nucleotide binding protein, Biochemistry 26: 8175–8182.PubMedCrossRefGoogle Scholar
  71. VanDongen, A., Codina, J., Olate, J., Mattera, R., Joho, R., Birnbaumer, L., and Brown, A. M., 1988, Newly identified brain potassium channels gated by the gaunine nucleotide binding (G) protein G0, Science 242: 1433–1437.PubMedCrossRefGoogle Scholar
  72. Watanabe, T., Umegaki, K., and Smith, W. L., 1986, Association of solubilized prostaglandin E2 receptor from renal medulla with a pertussis toxin-reactive guanine nucleotide regulatory protein, J. Biol. Chem. 261: 13430–13439.PubMedGoogle Scholar
  73. Watkins, P A, Moss, J., and Vaughan, M., 1981, ADP ribosylation of membrane proteins from human fibroblasts. Effect of prior exposure of cells to choleragen, J. Biol. Chem. 256: 4895–4899.PubMedGoogle Scholar
  74. Weiss, E. R., Kelleher, D. J., Woon, C. W., Soparkar, S., Osawa, S., Heasley, L. E., and Johnson, G. L., 1988, Receptor activation of G proteins, FASEB J. 2: 2841–2848.PubMedGoogle Scholar
  75. Yatani, A., Codina, J., Brown, A. M., and Birnbaumer, L., 1987a, Direct activation of mammalian atrial muscarinic K channels by a human erythrocyte pertussis toxin-sensitive G protein, Gk, Science 235: 207–211.PubMedCrossRefGoogle Scholar
  76. Yatani, A., Codina, J., Sekura, R. D., Birnbaumer, L., and Brown, A. M., 1987b, Reconstitution of somatostatin and muscarinic receptor mediated stimulation of K + channels by isolated Gk protein in clonal rat anterior pituitary cell membranes, Mol. Endocrinol. 1: 283–289.PubMedCrossRefGoogle Scholar
  77. Yatani, A., Imoto, Y., Codina, J., Hamilton, S. L., Brown, A. M., and Bimbaumer, L., 1988a, The stimulatory G protein of adenylyl cyclase, GS, also stimulates dihydropyridine-sensitive Cat+ channels. Evidence for direct regulation independent of phosphorylation by cAMP-dependent protein kinase or stimulation by a dihydropyridine agonist, J. Biol. Chem. 263: 9887–9895.PubMedGoogle Scholar
  78. Yatani, A., Mattera, R., Codina, J., Graf, R., Okabe, K., Padrell, E., Iyengar, R., Brown, A. M., and Birnbaumer, L., 1988b, The G protein-gated atrial K+ channel is stimulated by three distinct Ga-subunits, Nature 336: 680–682.PubMedCrossRefGoogle Scholar
  79. Yatani, A., Hamm, H., Codina, J., Mazzoni, M. R., Bimbaumer, L., and Brown, A. M., 1988c, A monoclonal antibody to the a subunit of Gk blocks muscarinic activation of atrial K+ channels, Science 241: 828–831.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Lutz Birnbaumer
    • 1
  • Atsuko Yatani
    • 2
  • Ravi Iyengar
    • 3
  • John D. Hildebrandt
    • 4
  • Juan Codina
    • 5
  • Arthur M. Brown
    • 2
  1. 1.Departments of Cell Biology and Molecular Physiology and BiophysicsBaylor College of MedicineHoustonUSA
  2. 2.Department of Molecular Physiology and BiophysicsBaylor College of MedicineHoustonUSA
  3. 3.Department of PharmacologyMount Sinai School of MedicineNew YorkUSA
  4. 4.Worcester Foundation for Experimental BiologyShrewsburyUSA
  5. 5.Department of Cell BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations